Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Weke is active.

Publication


Featured researches published by Patrick Weke.


11th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, ICNPAA 2016, 4 July 2016 through 8 July 2016 | 2017

Construction of moment-matching multinomial lattices using Vandermonde matrices and Gröbner bases

Karl Lundengård; Carolyne Ogutu; Sergei Silvestrov; Ying Ni; Patrick Weke

In order to describe and analyze the quantitative behavior of stochastic processes, such as the process followed by a financial asset, various discretization methods are used. One such set of methods are lattice models where a time interval is divided into equal time steps and the rate of change for the process is restricted to a particular set of values in each time step. The well-known binomial- and trinomial models are the most commonly used in applications, although several kinds of higher order models have also been examined. Here we will examine various ways of designing higher order lattice schemes with different node placements in order to guarantee moment-matching with the process.In order to describe and analyze the quantitative behavior of stochastic processes, such as the process followed by a financial asset, various discretization methods are used. One such set of methods are lattice models where a time interval is divided into equal time steps and the rate of change for the process is restricted to a particular set of values in each time step. The well-known binomial- and trinomial models are the most commonly used in applications, although several kinds of higher order models have also been examined. Here we will examine various ways of designing higher order lattice schemes with different node placements in order to guarantee moment-matching with the process.


Modern Problems in Insurance Mathematics | 2014

Asian Options, Jump-Diffusion Processes on a Lattice and Vandermonde Matrices

Karl Lundengård; Carolyne Ogutu; Sergei Silvestrov; Patrick Weke

Asian options are options whose value depends on the average asset price during its lifetime. They are useful because they are less subject to price manipulations. We consider Asian option pricing on a lattice where the underlying asset follows the Merton–Bates jump-diffusion model. We describe the construction of the lattice using the moment matching technique which results in an equation system described by a Vandermonde matrix. Using some properties of Vandermonde matrices we calculate the jump probabilities of the resulting system. Some conditions on the possible jump sizes in the lattice are also given.


10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014 Conference date: 15–18 July 2014 Location: Narvik, Norway | 2014

Pricing Asian options using moment matching on a multinomial lattice

Carolyne Ogutu; Karl Lundengård; Sergei Silvestrov; Patrick Weke

Pricing Asian options is often done using bi- or trinomial lattice methods. Here some results for generalizing these methods to lattices with more nodes are presented. We consider Asian option pricing on a lattice where the underlying asset follows Merton–Bates jump-diffusion model and describe the construction of a lattice using the moment matching technique which results in an equation system described by a rectangular Vandermonde matrix. The system is solved using the explicit expression for the inverse of the Vandermonde matrix and some restrictions on the jump sizes of the lattice and the distribution of moments are identified. The consequences of these restrictions for the suitability of the multinomial lattice methods are also discussed.


Discovery and Innovation | 2009

Common Nearly Best Linear Estimates of Location and Scale Parameters: Normal and Logistic Distributions

Patrick Weke

Common nearly best linear estimates of location and scale parameters of normal and logistic distributions, which are based on complete samples, are considered. Here, the population from which the samples are drawn is either normal or logistic population or a fusion of both distributions and the estimates are computed when it is not yet known which of the two populations (between the normal and logistic) is true. The problem discussed in this paper involves two possible population types in a given sample. Samples of sizes n=5,6,8,10 and are used to validate these estimates and a comparison of their variances is made with those of the best linear unbiased estimators (BLUEs) for normal and logistic distributions. Keywords : Estimation; order statistics; unbiased and nearly unbiased estimators Discovery and Innovation Vol. 19 (2) 2007: pp. 133-139


Scientiae Mathematicae japonicae | 2001

FUZZY IDEALS AND WEAK IDEALS IN BCK-ALGEBRAS

C Lele; C Wu; Patrick Weke


Journal of Mathematical Finance | 2016

Financial Time Series Modelling of Trends and Patterns in the Energy Markets

Jane Aduda; Patrick Weke; Philip Ngare; Joseph Mwaniki


Archive | 2016

Linear Estimation of Scale Parameter for Logistic Distribution Based on Consecutive Order Statistics

Patrick Weke


International journal of scientific research | 2016

Consumer Lending Using Social Media Data

Patrick Weke; Davis Bundi Ntwiga


International Journal of Mathematical Archive | 2016

MODELING TRUST IN SOCIAL NETWORK

Davis Bundi Ntwiga; Patrick Weke; Moses Manene; Joseph Mwaniki


International Advanced Research Journal in Science, Engineering and Technology | 2016

Trust and Distrust: A Reputation Ratings Approach

Patrick Weke; Ivivi Maniki; Davis Bundi Ntwiga; Moses Manene

Collaboration


Dive into the Patrick Weke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karl Lundengård

Mälardalen University College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas N. O. Achia

University of the Witwatersrand

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Ni

Mälardalen University College

View shared research outputs
Researchain Logo
Decentralizing Knowledge