Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Windpassinger is active.

Publication


Featured researches published by Patrick Windpassinger.


Science | 2011

Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices

Julian Struck; Christoph Ölschläger; R. Le Targat; Parvis Soltan-Panahi; André Eckardt; Maciej Lewenstein; Patrick Windpassinger; K. Sengstock

An optical lattice of trapped atoms provides a tractable and tunable setup to study complex magnetic interactions. Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system. We use the motional degrees of freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases: ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is revealed with different types of phase transitions. Our results provide a route to study highly debated phases like spin-liquids as well as the dynamics of quantum phase transitions.


Physical Review Letters | 2012

Tunable gauge potential for neutral and spinless particles in driven optical lattices.

Julian Struck; Christoph Ölschläger; Malte Weinberg; Philipp Hauke; Juliette Simonet; André Eckardt; Maciej Lewenstein; K. Sengstock; Patrick Windpassinger

We present a universal method to create a tunable, artificial vector gauge potential for neutral particles trapped in an optical lattice. The necessary Peierls phase of the hopping parameters between neighboring lattice sites is generated by applying a suitable periodic inertial force such that the method does not rely on any internal structure of the particles. We experimentally demonstrate the realization of such artificial potentials, which generate ground-state superfluids at arbitrary nonzero quasimomentum. We furthermore investigate possible implementations of this scheme to create tunable magnetic fluxes, going towards model systems for strong-field physics.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit

Jürgen Appel; Patrick Windpassinger; Daniel Oblak; Ulrich Busk Hoff; Niels Kjærgaard; E. S. Polzik

Squeezing of quantum fluctuations by means of entanglement is a well-recognized goal in the field of quantum information science and precision measurements. In particular, squeezing the fluctuations via entanglement between 2-level atoms can improve the precision of sensing, clocks, metrology, and spectroscopy. Here, we demonstrate 3.4 dB of metrologically relevant squeezing and entanglement for ≳ 105 cold caesium atoms via a quantum nondemolition (QND) measurement on the atom clock levels. We show that there is an optimal degree of decoherence induced by the quantum measurement which maximizes the generated entanglement. A 2-color QND scheme used in this paper is shown to have a number of advantages for entanglement generation as compared with a single-color QND measurement.


Physical Review Letters | 2012

Non-Abelian gauge fields and topological insulators in shaken optical lattices

Philipp Hauke; Olivier Tieleman; Alessio Celi; Christoph Ölschläger; Juliette Simonet; Julian Struck; Malte Weinberg; Patrick Windpassinger; K. Sengstock; Maciej Lewenstein; André Eckardt

Time-periodic driving like lattice shaking offers a low-demanding method to generate artificial gauge fields in optical lattices. We identify the relevant symmetries that have to be broken by the driving function for that purpose and demonstrate the power of this method by making concrete proposals for its application to two-dimensional lattice systems: We show how to tune frustration and how to create and control band touching points like Dirac cones in the shaken kagome lattice. We propose the realization of a topological and a quantum spin Hall insulator in a shaken spin-dependent hexagonal lattice. We describe how strong artificial magnetic fields can be achieved for example in a square lattice by employing superlattice modulation. Finally, exemplified on a shaken spin-dependent square lattice, we develop a method to create strong non-abelian gauge fields.


Nature Physics | 2011

Multi-component quantum gases in spin-dependent hexagonal lattices

Parvis Soltan-Panahi; Julian Struck; Philipp Hauke; Andreas Bick; Wiebke Plenkers; Georg Meineke; Christoph Becker; Patrick Windpassinger; Maciej Lewenstein; K. Sengstock

Ultracold quantum gases in optical lattices have been used to study a wide range of many-body effects. Nearly all experiments so far, however, have been performed in cubic optical lattice structures. Now a ‘honeycomb’ lattice structure has been realized. The approach promises insight into materials with hexagonal crystal symmetries, such as graphene or carbon nanotubes.


Nature Physics | 2013

Engineering Ising-XY spin-models in a triangular lattice using tunable artificial gauge fields

Julian Struck; Malte Weinberg; Christoph Ölschläger; Patrick Windpassinger; Juliette Simonet; K. Sengstock; Robert Höppner; Philipp Hauke; André Eckardt; Maciej Lewenstein; Ludwig Mathey

A quantum gas trapped in an optical lattice of triangular symmetry can now be driven from a paramagnetic to an antiferromagnetic state by a tunable artificial magnetic field.


Reports on Progress in Physics | 2013

Engineering novel optical lattices

Patrick Windpassinger; K. Sengstock

Optical lattices have developed into a widely used and highly recognized tool to study many-body quantum physics with special relevance for solid state type systems. One of the most prominent reasons for this success is the high degree of tunability in the experimental setups. While at the beginning quasi-static, cubic geometries were mainly explored, the focus of the field has now shifted toward new lattice topologies and the dynamical control of lattice structures. In this review we intend to give an overview of the progress recently achieved in this field on the experimental side. In addition, we discuss theoretical proposals exploiting specifically these novel lattice geometries.


Nature Physics | 2012

Quantum phase transition to unconventional multi-orbital superfluidity in optical lattices

Parvis Soltan-Panahi; Dirk-Sören Lühmann; Julian Struck; Patrick Windpassinger; K. Sengstock

The behaviour of molecules and solids is governed by the interplay of electronic orbitals. Superfluidity, in contrast, is typically considered a single-orbital effect. Now, a combined experimental and theoretical study provides evidence for a multi-orbital superfluid, with a complex order parameter, occurring in a binary spin mixture of atoms trapped in an hexagonal optical lattice.


Optica | 2016

Space-borne frequency comb metrology

Matthias Lezius; Tobias Wilken; Christian Deutsch; Michele Giunta; Olaf Mandel; Andy Thaller; Vladimir Schkolnik; Max Schiemangk; Aline Dinkelaker; Anja Kohfeldt; Andreas Wicht; Markus Krutzik; Achim Peters; Ortwin Hellmig; Hannes Duncker; K. Sengstock; Patrick Windpassinger; Kai Lampmann; Thomas Hülsing; T. W. Hänsch; Ronald Holzwarth

Precision time references in space are of major importance to satellite-based fundamental science, global satellite navigation, earth observation, and satellite formation flying. Here we report on the operation of a compact, rugged, and automated optical frequency comb setup on a sounding rocket in space under microgravity. The experiment compared two clocks, one based on the optical D2 transition in Rb, and another on hyperfine splitting in Cs. This represents the first frequency comb based optical clock operation in space, which is an important milestone for future satellite-based precision metrology. Based on the approach demonstrated here, future space-based precision metrology can be improved by orders of magnitude when referencing to state-of-the-art optical clock transitions.


Physical Review Letters | 2008

Nondestructive Probing of Rabi Oscillations on the Cesium Clock Transition near the Standard Quantum Limit

Patrick Windpassinger; Daniel Oblak; Plamen G. Petrov; M. Kubasik; Mark Saffman; C. L. Garrido Alzar; Jürgen Appel; J. H. Müller; Niels Kjærgaard; E. S. Polzik

We report on the nondestructive observation of Rabi oscillations on the Cs clock transition. The internal atomic state evolution of a dipole-trapped ensemble of cold atoms is inferred from the phase shift of a probe laser beam as measured using a Mach-Zehnder interferometer. We describe a single color as well as a two-color probing scheme. Using the latter, measurements of the collective pseudospin projection of atoms in a superposition of the clock states are performed and the observed spin fluctuations are shown to be close to the standard quantum limit.

Collaboration


Dive into the Patrick Windpassinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Krutzik

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Achim Peters

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir Schkolnik

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

E. S. Polzik

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Andreas Wicht

Ferdinand-Braun-Institut

View shared research outputs
Researchain Logo
Decentralizing Knowledge