Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrik D’haeseleer is active.

Publication


Featured researches published by Patrik D’haeseleer.


Nature | 2009

A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea.

Dongying Wu; Philip Hugenholtz; Konstantinos Mavromatis; Rüdiger Pukall; Eileen Dalin; Natalia Ivanova; Victor Kunin; Lynne Goodwin; Martin Wu; Brian J. Tindall; Sean D. Hooper; Amrita Pati; Athanasios Lykidis; Stefan Spring; Iain Anderson; Patrik D’haeseleer; Adam Zemla; Alla Lapidus; Matt Nolan; Alex Copeland; Cliff Han; Feng Chen; Jan-Fang Cheng; Susan Lucas; Cheryl A. Kerfeld; Elke Lang; Sabine Gronow; Patrick Chain; David Bruce; Edward M. Rubin

Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms. There are now nearly 1,000 completed bacterial and archaeal genomes available, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic ‘phylogenomic’ efforts to compile a phylogeny-driven ‘Genomic Encyclopedia of Bacteria and Archaea’ in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.


Standards in Genomic Sciences | 2009

Complete genome sequence of Kytococcus sedentarius type strain (541T)

David Sims; Thomas Brettin; John C. Detter; Cliff Han; Alla Lapidus; Alex Copeland; Tijana Glavina del Rio; Matt Nolan; Feng Chen; Susan Lucas; Hope Tice; Jan-Fang Cheng; David Bruce; Lynne Goodwin; Sam Pitluck; Galina Ovchinnikova; Amrita Pati; Natalia Ivanova; Konstantinos Mavromatis; Amy Chen; Krishna Palaniappan; Patrik D’haeseleer; Patrick Chain; Jim Bristow; Jonathan A. Eisen; Victor Markowitz; Philip Hugenholtz; Susanne Schneider; Markus Göker; Rüdiger Pukall

Kytococcus sedentarius (ZoBell and Upham 1944) Stackebrandt et al. 1995 is the type strain of the species, and is of phylogenetic interest because of its location in the Dermacoccaceae, a poorly studied family within the actinobacterial suborder Micrococcineae. K. sedentarius is known for the production of oligoketide antibiotics as well as for its role as an opportunistic pathogen causing valve endocarditis, hemorrhagic pneumonia, and pitted keratolysis. It is strictly aerobic and can only grow when several amino acids are provided in the medium. The strain described in this report is a free-living, nonmotile, Gram-positive bacterium, originally isolated from a marine environment. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of a member of the family Dermacoccaceae and the 2,785,024 bp long single replicon genome with its 2639 protein-coding and 64 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.


Bioenergy Research | 2010

Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities

Kristen M. DeAngelis; John M. Gladden; Martin Allgaier; Patrik D’haeseleer; Julian L. Fortney; Amitha P. Reddy; Philip Hugenholtz; Steven W. Singer; Jean S. Vander Gheynst; Whendee L. Silver; Blake A. Simmons; Terry C. Hazen

Producing cellulosic biofuels from plant material has recently emerged as a key US Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies. One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full-length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.


Biotechnology for Biofuels | 2014

Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community

John M. Gladden; Joshua I. Park; Jessica Carvalho Bergmann; Vimalier Reyes-Ortiz; Patrik D’haeseleer; Betania F. Quirino; Kenneth L. Sale; Blake A. Simmons; Steven W. Singer

BackgroundThe development of advanced biofuels from lignocellulosic biomass will require the use of both efficient pretreatment methods and new biomass-deconstructing enzyme cocktails to generate sugars from lignocellulosic substrates. Certain ionic liquids (ILs) have emerged as a promising class of compounds for biomass pretreatment and have been demonstrated to reduce the recalcitrance of biomass for enzymatic hydrolysis. However, current commercial cellulase cocktails are strongly inhibited by most of the ILs that are effective biomass pretreatment solvents. Fortunately, recent research has shown that IL-tolerant cocktails can be formulated and are functional on lignocellulosic biomass. This study sought to expand the list of known IL-tolerant cellulases to further enable IL-tolerant cocktail development by developing a combined in vitro/in vivo screening pipeline for metagenome-derived genes.ResultsThirty-seven predicted cellulases derived from a thermophilic switchgrass-adapted microbial community were screened in this study. Eighteen of the twenty-one enzymes that expressed well in E. coli were active in the presence of the IL 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) concentrations of at least 10% (v/v), with several retaining activity in the presence of 40% (v/v), which is currently the highest reported tolerance to [C2mim][OAc] for any cellulase. In addition, the optimum temperatures of the enzymes ranged from 45 to 95°C and the pH optimum ranged from 5.5 to 7.5, indicating these enzymes can be used to construct cellulase cocktails that function under a broad range of temperature, pH and IL concentrations.ConclusionsThis study characterized in detail twenty-one cellulose-degrading enzymes derived from a thermophilic microbial community and found that 70% of them were [C2mim][OAc]-tolerant. A comparison of optimum temperature and [C2mim][OAc]-tolerance demonstrates that a positive correlation exists between these properties for those enzymes with a optimum temperature >70°C, further strengthening the link between thermotolerance and IL-tolerance for lignocelluolytic glycoside hydrolases.


BMC Biotechnology | 2012

Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization

Michael J. Dougherty; Patrik D’haeseleer; Terry C. Hazen; Blake A. Simmons; Paul D. Adams; Masood Z. Hadi

BackgroundMetagenomics approaches provide access to environmental genetic diversity for biotechnology applications, enabling the discovery of new enzymes and pathways for numerous catalytic processes. Discovery of new glycoside hydrolases with improved biocatalytic properties for the efficient conversion of lignocellulosic material to biofuels is a critical challenge in the development of economically viable routes from biomass to fuels and chemicals.ResultsTwenty-two putative ORFs (open reading frames) were identified from a switchgrass-adapted compost community based on sequence homology to related gene families. These ORFs were expressed in E. coli and assayed for predicted activities. Seven of the ORFs were demonstrated to encode active enzymes, encompassing five classes of hemicellulases. Four enzymes were over expressed in vivo, purified to homogeneity and subjected to detailed biochemical characterization. Their pH optima ranged between 5.5 - 7.5 and they exhibit moderate thermostability up to ~60-70°C.ConclusionsSeven active enzymes were identified from this set of ORFs comprising five different hemicellulose activities. These enzymes have been shown to have useful properties, such as moderate thermal stability and broad pH optima, and may serve as the starting points for future protein engineering towards the goal of developing efficient enzyme cocktails for biomass degradation under diverse process conditions.


Current Opinion in Biotechnology | 2012

Application of phenotypic microarrays to environmental microbiology

Sharon E. Borglin; Dominique Joyner; Kristen M. DeAngelis; Jane Khudyakov; Patrik D’haeseleer; Marcin P. Joachimiak; Terry C. Hazen

Environmental organisms are extremely diverse and only a small fraction has been successfully cultured in the laboratory. Culture in micro wells provides a method for rapid screening of a wide variety of growth conditions and commercially available plates contain a large number of substrates, nutrient sources, and inhibitors, which can provide an assessment of the phenotype of an organism. This review describes applications of phenotype arrays to anaerobic and thermophilic microorganisms, use of the plates in stress response studies, in development of culture media for newly discovered strains, and for assessment of phenotype of environmental communities. Also discussed are considerations and challenges in data interpretation and visualization, including data normalization, statistics, and curve fitting.


PLOS ONE | 2013

Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses

Amitha P. Reddy; Christopher W. Simmons; Patrik D’haeseleer; Jane Khudyakov; Helcio Burd; Masood Z. Hadi; Blake A. Simmons; Steven W. Singer; Michael P. Thelen; Jean S. VanderGheynst

High-solids incubations were performed to enrich for microbial communities and enzymes that decompose rice straw under mesophilic (35°C) and thermophilic (55°C) conditions. Thermophilic enrichments yielded a community that was 7.5 times more metabolically active on rice straw than mesophilic enrichments. Extracted xylanase and endoglucanse activities were also 2.6 and 13.4 times greater, respectively, for thermophilic enrichments. Metagenome sequencing was performed on enriched communities to determine community composition and mine for genes encoding lignocellulolytic enzymes. Proteobacteria were found to dominate the mesophilic community while Actinobacteria were most abundant in the thermophilic community. Analysis of protein family representation in each metagenome indicated that cellobiohydrolases containing carbohydrate binding module 2 (CBM2) were significantly overrepresented in the thermophilic community. Micromonospora, a member of Actinobacteria, primarily housed these genes in the thermophilic community. In light of these findings, Micromonospora and other closely related Actinobacteria genera appear to be promising sources of thermophilic lignocellulolytic enzymes for rice straw deconstruction under high-solids conditions. Furthermore, these discoveries warrant future research to determine if exoglucanases with CBM2 represent thermostable enzymes tolerant to the process conditions expected to be encountered during industrial biofuel production.


ACS Chemical Biology | 2014

Phylogenomically Guided Identification of Industrially Relevant GH1 β-Glucosidases through DNA Synthesis and Nanostructure-Initiator Mass Spectrometry

Richard A. Heins; Xiaoliang Cheng; Sangeeta Nath; Kai Deng; Benjamin P. Bowen; Dylan Chivian; Supratim Datta; Gregory D. Friedland; Patrik D’haeseleer; Dongying Wu; Mary Bao Tran-Gyamfi; Chessa S. Scullin; Seema Singh; Weibing Shi; Matthew Hamilton; Matthew L. Bendall; Alexander Sczyrba; John W. Thompson; Taya Feldman; Joel M. Guenther; John M. Gladden; Jan-Fang Cheng; Paul D. Adams; Edward M. Rubin; Blake A. Simmons; Kenneth L. Sale; Trent R. Northen; Samuel Deutsch

Harnessing the biotechnological potential of the large number of proteins available in sequence databases requires scalable methods for functional characterization. Here we propose a workflow to address this challenge by combining phylogenomic guided DNA synthesis with high-throughput mass spectrometry and apply it to the systematic characterization of GH1 β-glucosidases, a family of enzymes necessary for biomass hydrolysis, an important step in the conversion of lignocellulosic feedstocks to fuels and chemicals. We synthesized and expressed 175 GH1s, selected from over 2000 candidate sequences to cover maximum sequence diversity. These enzymes were functionally characterized over a range of temperatures and pHs using nanostructure-initiator mass spectrometry (NIMS), generating over 10,000 data points. When combined with HPLC-based sugar profiling, we observed GH1 enzymes active over a broad temperature range and toward many different β-linked disaccharides. For some GH1s we also observed activity toward laminarin, a more complex oligosaccharide present as a major component of macroalgae. An area of particular interest was the identification of GH1 enzymes compatible with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]), a next-generation biomass pretreatment technology. We thus searched for GH1 enzymes active at 70 °C and 20% (v/v) [C2mim][OAc] over the course of a 24-h saccharification reaction. Using our unbiased approach, we identified multiple enzymes of different phylogentic origin with such activities. Our approach of characterizing sequence diversity through targeted gene synthesis coupled to high-throughput screening technologies is a broadly applicable paradigm for a wide range of biological problems.


Standards in Genomic Sciences | 2009

Complete genome sequence of Halogeometricum borinquense type strain (PR3T)

Stephanie Malfatti; Brian J. Tindall; Susanne Schneider; Regine Fahnrich; Alla Lapidus; Kurt LaButtii; Alex Copeland; Tijana Glavina del Rio; Matt Nolan; Feng Chen; Susan Lucas; Hope Tice; Jan Fang Cheng; David Bruce; Lynne Goodwin; Sam Pitluck; Iain Anderson; Amrita Pati; Natalia Ivanova; Konstantinos Mavromatis; Amy Chen; Krishna Palaniappan; Patrik D’haeseleer; Markus Göker; Jim Bristow; Jonathan A. Eisen; Victor Markowitz; Philip Hugenholtz; Nikos C. Kyrpides; Hans-Peter Klenk

Halogeometricum borinquense Montalvo-Rodríguez et al. 1998 is the type species of the genus, and is of phylogenetic interest because of its distinct location between the halobacterial genera Haloquadratum and Halosarcina. H. borinquense requires extremely high salt (NaCl) concentrations for growth. It can not only grow aerobically but also anaerobically using nitrate as electron acceptor. The strain described in this report is a free-living, motile, pleomorphic, euryarchaeon, which was originally isolated from the solar salterns of Cabo Rojo, Puerto Rico. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the halobacterial genus Halogeometricum, and this 3,944,467 bp long six replicon genome with its 3937 protein-coding and 57 RNA genes is part of the GenomicEncyclopedia ofBacteria andArchaea project.


Biotechnology for Biofuels | 2014

Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw

Christopher W. Simmons; Amitha P. Reddy; Patrik D’haeseleer; Jane Khudyakov; Konstantinos Billis; Amrita Pati; Blake A. Simmons; Steven W. Singer; Michael P. Thelen; Jean S. VanderGheynst

BackgroundNew lignocellulolytic enzymes are needed that maintain optimal activity under the harsh conditions present during industrial enzymatic deconstruction of biomass, including high temperatures, the absence of free water, and the presence of inhibitors from the biomass. Enriching lignocellulolytic microbial communities under these conditions provides a source of microorganisms that may yield robust lignocellulolytic enzymes tolerant to the extreme conditions needed to improve the throughput and efficiency of biomass enzymatic deconstruction. Identification of promising enzymes from these systems is challenging due to complex substrate-enzyme interactions and requirements to assay for activity. In this study, metatranscriptomes from compost-derived microbial communities enriched on rice straw under thermophilic and mesophilic conditions were sequenced and analyzed to identify lignocellulolytic enzymes overexpressed under thermophilic conditions. To determine differential gene expression across mesophilic and thermophilic treatments, a method was developed which pooled gene expression by functional category, as indicated by Pfam annotations, since microbial communities performing similar tasks are likely to have overlapping functions even if they share no specific genes.ResultsDifferential expression analysis identified enzymes from glycoside hydrolase family 48, carbohydrate binding module family 2, and carbohydrate binding module family 33 domains as significantly overexpressed in the thermophilic community. Overexpression of these protein families in the thermophilic community resulted from expression of a small number of genes not currently represented in any protein database. Genes in overexpressed protein families were predominantly expressed by a single Actinobacteria genus, Micromonospora.ConclusionsCoupling measurements of deconstructive activity with comparative analyses to identify overexpressed enzymes in lignocellulolytic communities provides a targeted approach for discovery of candidate enzymes for more efficient biomass deconstruction. Glycoside hydrolase family 48 cellulases and carbohydrate binding module family 33 polysaccharide monooxygenases with carbohydrate binding module family 2 domains may improve saccharification of lignocellulosic biomass under high-temperature and low moisture conditions relevant to industrial biofuel production.

Collaboration


Dive into the Patrik D’haeseleer's collaboration.

Top Co-Authors

Avatar

Blake A. Simmons

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amrita Pati

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Bruce

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Feng Chen

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lynne Goodwin

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matt Nolan

Joint Genome Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge