Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrik Ohberg is active.

Publication


Featured researches published by Patrik Ohberg.


Reviews of Modern Physics | 2011

Colloquium: Artificial gauge potentials for neutral atoms

Jean Dalibard; Fabrice Gerbier; Gediminas Juzeliūnas; Patrik Ohberg

When a neutral atom moves in a properly designed laser field, its center-of-mass motion may mimic the dynamics of a charged particle in a magnetic field, with the emergence of a Lorentz-like force. In this Colloquium the physical principles at the basis of this artificial (synthetic) magnetism are presented. The corresponding Aharonov-Bohm phase is related to the Berrys phase that emerges when the atom adiabatically follows one of the dressed states of the atom-laser interaction. Some manifestations of artificial magnetism for a cold quantum gas, in particular, in terms of vortex nucleation are discussed. The analysis is then generalized to the simulation of non-Abelian gauge potentials and some striking consequences are presented, such as the emergence of an effective spin-orbit coupling. Both the cases of bulk gases and discrete systems, where atoms are trapped in an optical lattice, are addressed.


Nature | 2008

Optical pumping of a single hole spin in a quantum dot

Brian D. Gerardot; Daniel Brunner; Paul A. Dalgarno; Patrik Ohberg; Stefan Seidl; Martin Kroner; Khaled Karrai; Nick Stoltz; P. M. Petroff; R. J. Warburton

The spin of an electron is a natural two-level system for realizing a quantum bit in the solid state. For an electron trapped in a semiconductor quantum dot, strong quantum confinement highly suppresses the detrimental effect of phonon-related spin relaxation. However, this advantage is offset by the hyperfine interaction between the electron spin and the 104 to 106 spins of the host nuclei in the quantum dot. Random fluctuations in the nuclear spin ensemble lead to fast spin decoherence in about ten nanoseconds. Spin-echo techniques have been used to mitigate the hyperfine interaction, but completely cancelling the effect is more attractive. In principle, polarizing all the nuclear spins can achieve this but is very difficult to realize in practice. Exploring materials with zero-spin nuclei is another option, and carbon nanotubes, graphene quantum dots and silicon have been proposed. An alternative is to use a semiconductor hole. Unlike an electron, a valence hole in a quantum dot has an atomic p orbital which conveniently goes to zero at the location of all the nuclei, massively suppressing the interaction with the nuclear spins. Furthermore, in a quantum dot with strong strain and strong quantization, the heavy hole with spin-3/2 behaves as a spin-1/2 system and spin decoherence mechanisms are weak. We demonstrate here high fidelity (about 99 per cent) initialization of a single hole spin confined to a self-assembled quantum dot by optical pumping. Our scheme works even at zero magnetic field, demonstrating a negligible hole spin hyperfine interaction. We determine a hole spin relaxation time at low field of about one millisecond. These results suggest a route to the realization of solid-state quantum networks that can intra-convert the spin state with the polarization of a photon.


Physical Review Letters | 2005

Non-Abelian gauge potentials for ultracold atoms with degenerate dark states.

Julius Ruseckas; Gediminas Juzeliūnas; Patrik Ohberg; Michael Fleischhauer

We show that the adiabatic motion of ultracold, multilevel atoms in spatially varying laser fields can give rise to effective non-Abelian gauge fields if degenerate adiabatic eigenstates of the atom-laser interaction exist. A pair of such degenerate dark states emerges, e.g., if laser fields couple three internal states of an atom to a fourth common one under pairwise two-photon-resonance conditions. For this so-called tripod scheme we derive general conditions for truly non-Abelian gauge potentials and discuss special examples. In particular we show that using orthogonal laser beams with orbital angular momentum an effective magnetic field can be generated that has a monopole component.


Optics Express | 2007

Optical ferris wheel for ultracold atoms

Sonja Franke-Arnold; Jonathan Leach; Miles J. Padgett; V. E. Lembessis; Demosthenes Ellinas; Amanda J. Wright; John M. Girkin; Patrik Ohberg; Aidan S. Arnold

We propose a versatile optical ring lattice suitable for trapping cold and quantum degenerate atomic samples. We demonstrate the realisation of intensity patterns from pairs of Laguerre-Gauss (exp(i??) modes with different ? indices. These patterns can be rotated by introducing a frequency shift between the modes. We can generate bright ring lattices for trapping atoms in red-detuned light, and dark ring lattices suitable for trapping atoms with minimal heating in the optical vortices of blue-detuned light. The lattice sites can be joined to form a uniform ring trap, making it ideal for studying persistent currents and the Mott insulator transition in a ring geometry.


Physical Review Letters | 2015

Observation of a Localized Flat-Band State in a Photonic Lieb Lattice

Sebabrata Mukherjee; Alexander Spracklen; Debaditya Choudhury; Nathan Goldman; Patrik Ohberg; Erika Andersson; Robert R. Thomson

We demonstrate the first experimental realization of a dispersionless state, in a photonic Lieb lattice formed by an array of optical waveguides. This engineered lattice supports three energy bands, including a perfectly flat middle band with an infinite effective mass. We analyze, both experimentally and theoretically, the evolution of well-prepared flat-band states, and show their remarkable robustness, even in the presence of disorder. The realization of flat-band states in photonic lattices opens an exciting door towards quantum simulation of flat-band models in a highly controllable environment.


Physical Review Letters | 2004

Slow light in degenerate Fermi gases

Gediminas Juzeliunas; Patrik Ohberg

We investigate the effect of slow light propagating in a degenerate atomic Fermi gas. In particular we use slow light with an orbital angular momentum. We present a microscopic theory for the interplay between light and matter and show how the slow light can provide an effective magnetic field acting on the electrically neutral fermions, a direct analogy of the free electron gas in an uniform magnetic field. As an example we illustrate how the corresponding de Haas-van Alphen effect can be seen in a gas of neutral atomic fermions.


Physical Review Letters | 2001

Dark Solitons in a Two-Component Bose-Einstein Condensate

Patrik Ohberg; L. Santos

The creation and interaction of dark solitons in a two-component Bose-Einstein condensate is investigated. For a miscible case, the interaction of dark solitons in different components is studied. Various possible scenarios are presented, including the formation of a soliton-soliton bound pair. We also analyze the soliton propagation in the presence of domains, and show that a dark soliton can be transferred from one component to the other at the domain wall when it exceeds a critical velocity. For lower velocities multiple reflections within the domain are observed, where the soliton is evaporated and accelerated after each reflection until it finally escapes from the domain.


Nature Communications | 2017

Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice

Sebabrata Mukherjee; Alexander Spracklen; Manuel Valiente; Erika Andersson; Patrik Ohberg; Nathan Goldman; Robert R. Thomson

Topological quantum matter can be realized by subjecting engineered systems to time-periodic modulations. In analogy with static systems, periodically driven quantum matter can be topologically classified by topological invariants, whose non-zero value guarantees the presence of robust edge modes. In the high-frequency limit of the drive, topology is described by standard topological invariants, such as Chern numbers. Away from this limit, these topological numbers become irrelevant, and novel topological invariants must be introduced to capture topological edge transport. The corresponding edge modes were coined anomalous topological edge modes, to highlight their intriguing origin. Here we demonstrate the experimental observation of these topological edge modes in a 2D photonic lattice, where these propagating edge states are shown to coexist with a quasi-localized bulk. Our work opens an exciting route for the exploration of topological physics in time-modulated systems operating away from the high-frequency regime.


Physical Review A | 2008

Quasirelativistic behavior of cold atoms in light fields

Gediminas Juzeliūnas; Julius Ruseckas; Markus Lindberg; L. Santos; Patrik Ohberg

We study the influence of three laser beams on the center-of-mass motion of cold atoms with internal energy levels in a tripod configuration. We show that, as for electrons in graphene, the atomic motion can be equivalent to the dynamics of ultrarelativistic two-component Dirac fermions. We propose and analyze an experimental setup for observing such a quasirelativistic motion of ultracold atoms. We demonstrate that the atoms can experience negative refraction and focusing by Veselago-type lenses. We also show how the chiral nature of the atomic motion manifests itself as an oscillation of the atomic internal state population, which depends strongly on the direction of the center-of-mass motion. For certain directions an atom remains in its initial state, whereas for other directions the populations undergo oscillations between a pair of internal states.


Physical Review A | 2012

Entanglement of distant optomechanical systems

Chaitanya Joshi; Jonas Larson; M. Jonson; Erika Andersson; Patrik Ohberg

We theoretically investigate the possibility to generate nonclassical states of optical and mechanical modes of optical cavities, distant from each other. A setup comprised of two identical cavities, each with one fixed and one movable mirror and coupled by an optical fiber, is studied in detail. We show that with such a setup there is potential to generate entanglement between the distant cavities, involving both optical and mechanical modes. The scheme is robust with respect to dissipation, and nonlocal correlations are found to exist in the steady state at finite temperatures.

Collaboration


Dive into the Patrik Ohberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika Andersson

University of Strathclyde

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathan Goldman

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge