Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrik Rorsman is active.

Publication


Featured researches published by Patrik Rorsman.


Science | 2007

The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate–Dependent Nucleic Acid Demethylase

Thomas Gerken; Christophe Girard; Yi-Chun Loraine Tung; Celia J. Webby; Vladimir Saudek; Kirsty S. Hewitson; Giles S. H. Yeo; Michael A. McDonough; Sharon Cunliffe; Luke A. McNeill; Juris Galvanovskis; Patrik Rorsman; Peter Robins; Xavier Prieur; Anthony P. Coll; Marcella Ma; Zorica Jovanovic; I. Sadaf Farooqi; Barbara Sedgwick; Inês Barroso; Tomas Lindahl; Chris P. Ponting; Frances M. Ashcroft; Stephen O'Rahilly; Christopher J. Schofield

Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate–dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.


Cell | 2012

Diabetes mellitus and the β cell: the last ten years.

Frances M. Ashcroft; Patrik Rorsman

Diabetes is a major global problem. During the past decade, the genetic basis of various monogenic forms of the disease, and their underlying molecular mechanisms, have been elucidated. Many genes that increase type 2 diabetes (T2DM) risk have also been identified, but how they do so remains enigmatic. Nevertheless, defective insulin secretion emerges as the main culprit in both monogenic and polygenic diabetes, with environmental and lifestyle factors, via obesity, accounting for the current dramatic increase in T2DM. There also have been significant advances in therapy, particularly for some monogenic disorders. We review here what ails the β cell and how its function may be restored.


Endocrinology | 2009

Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice.

Ulrika E.A. Mårtensson; S Albert Salehi; Sara H. Windahl; Maria F. Gomez; Karl Swärd; Joanna Daszkiewicz-Nilsson; A. Wendt; Niklas Andersson; Per Hellstrand; Per-Olof Grände; Christer Owman; Clifford J. Rosen; Martin L. Adamo; Ingmar Lundquist; Patrik Rorsman; Bengt-Olof Nilsson; Claes Ohlsson; Björn Olde; L. M. Fredrik Leeb-Lundberg

In vitro studies suggest that the G protein-coupled receptor (GPR) 30 is a functional estrogen receptor. However, the physiological role of GPR30 in vivo is unknown, and it remains to be determined whether GPR30 is an estrogen receptor also in vivo. To this end, we studied the effects of disrupting the GPR30 gene in female and male mice. Female GPR30((-/-)) mice had hyperglycemia and impaired glucose tolerance, reduced body growth, increased blood pressure, and reduced serum IGF-I levels. The reduced growth correlated with a proportional decrease in skeletal development. The elevated blood pressure was associated with an increased vascular resistance manifested as an increased media to lumen ratio of the resistance arteries. The hyperglycemia and impaired glucose tolerance in vivo were associated with decreased insulin expression and release in vivo and in vitro in isolated pancreatic islets. GPR30 is expressed in islets, and GPR30 deletion abolished estradiol-stimulated insulin release both in vivo in ovariectomized adult mice and in vitro in isolated islets. Our findings show that GPR30 is important for several metabolic functions in female mice, including estradiol-stimulated insulin release.


Diabetes | 2008

Voltage-Gated Ion Channels in Human Pancreatic β-Cells: Electrophysiological Characterization and Role in Insulin Secretion

Matthias Braun; Reshma Ramracheya; Martin Bengtsson; Quan Zhang; Jovita Karanauskaite; Christopher J. Partridge; Paul Johnson; Patrik Rorsman

OBJECTIVE— To characterize the voltage-gated ion channels in human β-cells from nondiabetic donors and their role in glucose-stimulated insulin release. RESEARCH DESIGN AND METHODS— Insulin release was measured from intact islets. Whole-cell patch-clamp experiments and measurements of cell capacitance were performed on isolated β-cells. The ion channel complement was determined by quantitative PCR. RESULTS— Human β-cells express two types of voltage-gated K+ currents that flow through delayed rectifying (KV2.1/2.2) and large-conductance Ca2+-activated K+ (BK) channels. Blockade of BK channels (using iberiotoxin) increased action potential amplitude and enhanced insulin secretion by 70%, whereas inhibition of KV2.1/2.2 (with stromatoxin) was without stimulatory effect on electrical activity and secretion. Voltage-gated tetrodotoxin (TTX)-sensitive Na+ currents (NaV1.6/1.7) contribute to the upstroke of action potentials. Inhibition of Na+ currents with TTX reduced glucose-stimulated (6–20 mmol/l) insulin secretion by 55–70%. Human β-cells are equipped with L- (CaV1.3), P/Q- (CaV2.1), and T- (CaV3.2), but not N- or R-type Ca2+ channels. Blockade of L-type channels abolished glucose-stimulated insulin release, while inhibition of T- and P/Q-type Ca2+ channels reduced glucose-induced (6 mmol/l) secretion by 60–70%. Membrane potential recordings suggest that L- and T-type Ca2+ channels participate in action potential generation. Blockade of P/Q-type Ca2+ channels suppressed exocytosis (measured as an increase in cell capacitance) by >80%, whereas inhibition of L-type Ca2+ channels only had a minor effect. CONCLUSIONS— Voltage-gated T-type and L-type Ca2+ channels as well as Na+ channels participate in glucose-stimulated electrical activity and insulin secretion. Ca2+-activated BK channels are required for rapid membrane repolarization. Exocytosis of insulin-containing granules is principally triggered by Ca2+ influx through P/Q-type Ca2+ channels.


The EMBO Journal | 1995

Co-localization of L-type Ca2+ channels and insulin-containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B-cells.

Krister Bokvist; Lena Eliasson; Carina Ämmälä; Erik Renström; Patrik Rorsman

We have monitored L‐type Ca2+ channel activity, local cytoplasmic Ca2+ transients, the distribution of insulin‐containing secretory granules and exocytosis in individual mouse pancreatic B‐cells. Subsequent to the opening of the Ca2+ channels, exocytosis is initiated with a latency < 100 ms. The entry of Ca2+ that precedes exocytosis is unevenly distributed over the cell and is concentrated to the region with the highest density of secretory granules. In this region, the cytoplasmic Ca2+ concentration is 5‐ to 10‐fold higher than in the remainder of the cell reaching concentrations of several micromolar. Single‐channel recordings confirm that the L‐type Ca2+ channels are clustered in the part of the cell containing the secretory granules. This arrangement, which is obviously reminiscent of the ‘active zones’ in nerve terminals, can be envisaged as being favourable to the B‐cell as it ensures that the Ca2+ transient is maximal and restricted to the part of the cell where it is required to rapidly initiate exocytosis whilst at the same time minimizing the expenditure of metabolic energy to subsequently restore the resting Ca2+ concentration.


Philosophical Transactions of the Royal Society B | 2005

Glucose-sensing mechanisms in pancreatic beta-cells

Patrick E. MacDonald; Jamie W. Joseph; Patrik Rorsman

The appropriate secretion of insulin from pancreatic β-cells is critically important to the maintenance of energy homeostasis. The β-cells must sense and respond suitably to postprandial increases of blood glucose, and perturbation of glucose-sensing in these cells can lead to hypoglycaemia or hyperglycaemias and ultimately diabetes. Here, we review β-cell glucose-sensing with a particular focus on the regulation of cellular excitability and exocytosis. We examine in turn: (i) the generation of metabolic signalling molecules; (ii) the regulation of β-cell membrane potential; and (iii) insulin granule dynamics and exocytosis. We further discuss the role of well known and putative candidate metabolic signals as regulators of insulin secretion.


The Journal of General Physiology | 2003

SUR1 Regulates PKA-independent cAMP-induced Granule Priming in Mouse Pancreatic B-cells

Lena Eliasson; Xiaosong Ma; Erik Renström; Sebastian Barg; Per-Olof Berggren; Juris Galvanovskis; Jesper Gromada; Xingjun Jing; Ingmar Lundquist; Albert Salehi; Sabine Sewing; Patrik Rorsman

Measurements of membrane capacitance were applied to dissect the cellular mechanisms underlying PKA-dependent and -independent stimulation of insulin secretion by cyclic AMP. Whereas the PKA-independent (Rp-cAMPS–insensitive) component correlated with a rapid increase in membrane capacitance of ∼80 fF that plateaued within ∼200 ms, the PKA-dependent component became prominent during depolarizations >450 ms. The PKA-dependent and -independent components of cAMP-stimulated exocytosis differed with regard to cAMP concentration dependence; the K d values were 6 and 29 μM for the PKA-dependent and -independent mechanisms, respectively. The ability of cAMP to elicit exocytosis independently of PKA activation was mimicked by the selective cAMP-GEFII agonist 8CPT-2Me-cAMP. Moreover, treatment of B-cells with antisense oligodeoxynucleotides against cAMP-GEFII resulted in partial (50%) suppression of PKA-independent exocytosis. Surprisingly, B-cells in islets isolated from SUR1-deficient mice (SUR1−/− mice) lacked the PKA-independent component of exocytosis. Measurements of insulin release in response to GLP-1 stimulation in isolated islets from SUR1−/− mice confirmed the complete loss of the PKA-independent component. This was not attributable to a reduced capacity of GLP-1 to elevate intracellular cAMP but instead associated with the inability of cAMP to stimulate influx of Cl− into the granules, a step important for granule priming. We conclude that the role of SUR1 in the B cell extends beyond being a subunit of the plasma membrane KATP-channel and that it also plays an unexpected but important role in the cAMP-dependent regulation of Ca2+-induced exocytosis.


Science | 2010

Overexpression of Alpha2A-Adrenergic Receptors Contributes to Type 2 Diabetes

Anders H. Rosengren; Ramunas Jokubka; Damon Tojjar; Charlotte Granhall; Ola Hansson; Dai-Qing Li; Vini Nagaraj; Thomas Reinbothe; Jonatan Tuncel; Lena Eliasson; Leif Groop; Patrik Rorsman; Albert Salehi; Valeriya Lyssenko; Holger Luthman; Erik Renström

Ratting Out a Diabetes Gene Inbred animals with inherited susceptibility to disease can be especially informative regarding pathogenetic mechanisms because they carry naturally occurring genetic variants of the same type that cause disease in humans. This principle is illustrated by Rosengren et al. (p. 217; published online 19 November), whose analysis of an inbred strain of rats prone to develop type 2 diabetes led to the discovery of a gene whose aberrant overexpression suppresses pancreatic insulin secretion in both rats and humans. The culprit gene, ADRA2A, encodes the alpha2A adrenergic receptor and is potentially a valuable lead for diabetes therapy because it can be targeted pharmacologically. Sequence variations in an adrenergic receptor gene cause reduced insulin secretion and contribute to type 2 diabetes. Several common genetic variations have been associated with type 2 diabetes, but the exact disease mechanisms are still poorly elucidated. Using congenic strains from the diabetic Goto-Kakizaki rat, we identified a 1.4-megabase genomic locus that was linked to impaired insulin granule docking at the plasma membrane and reduced β cell exocytosis. In this locus, Adra2a, encoding the alpha2A-adrenergic receptor [alpha(2A)AR], was significantly overexpressed. Alpha(2A)AR mediates adrenergic suppression of insulin secretion. Pharmacological receptor antagonism, silencing of receptor expression, or blockade of downstream effectors rescued insulin secretion in congenic islets. Furthermore, we identified a single-nucleotide polymorphism in the human ADRA2A gene for which risk allele carriers exhibited overexpression of alpha(2A)AR, reduced insulin secretion, and increased type 2 diabetes risk. Human pancreatic islets from risk allele carriers exhibited reduced granule docking and secreted less insulin in response to glucose; both effects were counteracted by pharmacological alpha(2A)AR antagonists.


Journal of Clinical Investigation | 2004

Isoform-specific regulation of mood behavior and pancreatic beta cell and cardiovascular function by L-type Ca 2+ channels.

Martina J. Sinnegger-Brauns; Alfred Hetzenauer; Irene G. Huber; Erik Renström; Georg Wietzorrek; Stanislav Berjukov; Maurizio Cavalli; Doris Walter; Alexandra Koschak; Ralph Waldschütz; Steffen Hering; Sergio Bova; Patrik Rorsman; Olaf Pongs; Nicolas Singewald; Jörg Striessnig

Ca(v)1.2 and Ca(v)1.3 L-type Ca(2+) channels (LTCCs) are believed to underlie Ca(2+) currents in brain, pancreatic beta cells, and the cardiovascular system. In the CNS, neuronal LTCCs control excitation-transcription coupling and neuronal plasticity. However, the pharmacotherapeutic implications of CNS LTCC modulation are difficult to study because LTCC modulators cause cardiovascular (activators and blockers) and neurotoxic (activators) effects. We selectively eliminated high dihydropyridine (DHP) sensitivity from Ca(v)1.2 alpha 1 subunits (Ca(v)1.2DHP-/-) without affecting function and expression. This allowed separation of the DHP effects of Ca(v)1.2 from those of Ca(v)1.3 and other LTCCs. DHP effects on pancreatic beta cell LTCC currents, insulin secretion, cardiac inotropy, and arterial smooth muscle contractility were lost in Ca(v)1.2DHP-/- mice, which rules out a direct role of Ca(v)1.3 for these physiological processes. Using Ca(v)1.2DHP-/- mice, we established DHPs as mood-modifying agents: LTCC activator-induced neurotoxicity was abolished and disclosed a depression-like behavioral effect without affecting spontaneous locomotor activity. LTCC activator BayK 8644 (BayK) activated only a specific set of brain areas. In the ventral striatum, BayK-induced release of glutamate and 5-HT, but not dopamine and noradrenaline, was abolished. This animal model provides a useful tool to elucidate whether Ca(v)1.3-selective channel modulation represents a novel pharmacological approach to modify CNS function without major peripheral effects.


Cell | 2009

Regulation of PKD by the MAPK p38δ in Insulin Secretion and Glucose Homeostasis

Grzegorz Sumara; Ivan Formentini; Stephan C. Collins; Izabela Sumara; Renata Windak; Bernd Bodenmiller; Reshma Ramracheya; Dorothée Caille; Huiping Jiang; Kenneth A. Platt; Paolo Meda; Rudolf Aebersold; Patrik Rorsman; Romeo Ricci

Summary Dysfunction and loss of insulin-producing pancreatic β cells represent hallmarks of diabetes mellitus. Here, we show that mice lacking the mitogen-activated protein kinase (MAPK) p38δ display improved glucose tolerance due to enhanced insulin secretion from pancreatic β cells. Deletion of p38δ results in pronounced activation of protein kinase D (PKD), the latter of which we have identified as a pivotal regulator of stimulated insulin exocytosis. p38δ catalyzes an inhibitory phosphorylation of PKD1, thereby attenuating stimulated insulin secretion. In addition, p38δ null mice are protected against high-fat-feeding-induced insulin resistance and oxidative stress-mediated β cell failure. Inhibition of PKD1 reverses enhanced insulin secretion from p38δ-deficient islets and glucose tolerance in p38δ null mice as well as their susceptibility to oxidative stress. In conclusion, the p38δ-PKD pathway integrates regulation of the insulin secretory capacity and survival of pancreatic β cells, pointing to a pivotal role for this pathway in the development of overt diabetes mellitus.

Collaboration


Dive into the Patrik Rorsman's collaboration.

Researchain Logo
Decentralizing Knowledge