Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Agostinis is active.

Publication


Featured researches published by Patrizia Agostinis.


Nature Reviews Cancer | 2012

Immunogenic cell death and DAMPs in cancer therapy

Dmitri V. Krysko; Abhishek D. Garg; Agnieszka Kaczmarek; Olga Krysko; Patrizia Agostinis; Peter Vandenabeele

Although it was thought that apoptotic cells, when rapidly phagocytosed, underwent a silent death that did not trigger an immune response, in recent years a new concept of immunogenic cell death (ICD) has emerged. The immunogenic characteristics of ICD are mainly mediated by damage-associated molecular patterns (DAMPs), which include surface-exposed calreticulin (CRT), secreted ATP and released high mobility group protein B1 (HMGB1). Most DAMPs can be recognized by pattern recognition receptors (PRRs). In this Review, we discuss the role of endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) in regulating the immunogenicity of dying cancer cells and the effect of therapy-resistant cancer microevolution on ICD.


Trends in Immunology | 2011

Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation

Dmitri V. Krysko; Patrizia Agostinis; Olga Krysko; Abhishek D. Garg; Claus Bachert; Bart N. Lambrecht; Peter Vandenabeele

Cell death and injury often lead to release or exposure of intracellular molecules called damage-associated molecular patterns (DAMPs) or cell death-associated molecules. These molecules are recognized by the innate immune system by pattern recognition receptors - the same receptors that detect pathogen-associated molecular patterns, thus revealing similarities between pathogen-induced and non-infectious inflammatory responses. Many DAMPs are derived from the plasma membrane, nucleus, endoplasmic reticulum and cytosol. Recently, mitochondria have emerged as other organelles that function as a source of DAMPs. Here, we highlight the significance of mitochondrial DAMPs and discuss their contribution to inflammation and development of human pathologies.


The EMBO Journal | 2012

A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death

Abhishek D. Garg; Dmitri V. Krysko; Tom Verfaillie; Agnieszka Kaczmarek; Gabriela B Ferreira; Thierry Marysael; Noemi Rubio; Malgorzata Firczuk; Chantal Mathieu; Anton Roebroek; Wim Annaert; Jakub Golab; Peter de Witte; Peter Vandenabeele; Patrizia Agostinis

Surface‐exposed calreticulin (ecto‐CRT) and secreted ATP are crucial damage‐associated molecular patterns (DAMPs) for immunogenic apoptosis. Inducers of immunogenic apoptosis rely on an endoplasmic reticulum (ER)‐based (reactive oxygen species (ROS)‐regulated) pathway for ecto‐CRT induction, but the ATP secretion pathway is unknown. We found that after photodynamic therapy (PDT), which generates ROS‐mediated ER stress, dying cancer cells undergo immunogenic apoptosis characterized by phenotypic maturation (CD80high, CD83high, CD86high, MHC‐IIhigh) and functional stimulation (NOhigh, IL‐10absent, IL‐1βhigh) of dendritic cells as well as induction of a protective antitumour immune response. Intriguingly, early after PDT the cancer cells displayed ecto‐CRT and secreted ATP before exhibiting biochemical signatures of apoptosis, through overlapping PERK‐orchestrated pathways that require a functional secretory pathway and phosphoinositide 3‐kinase (PI3K)‐mediated plasma membrane/extracellular trafficking. Interestingly, eIF2α phosphorylation and caspase‐8 signalling are dispensable for this ecto‐CRT exposure. We also identified LRP1/CD91 as the surface docking site for ecto‐CRT and found that depletion of PERK, PI3K p110α and LRP1 but not caspase‐8 reduced the immunogenicity of the cancer cells. These results unravel a novel PERK‐dependent subroutine for the early and simultaneous emission of two critical DAMPs following ROS‐mediated ER stress.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


Autophagy | 2013

ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death

Abhishek D. Garg; Aleksandra M. Dudek; Gabriela B Ferreira; Tom Verfaillie; Peter Vandenabeele; Dmitri V. Krysko; Chantal Mathieu; Patrizia Agostinis

Calreticulin surface exposure (ecto-CALR), ATP secretion, maturation of dendritic cells (DCs) and stimulation of T cells are prerequisites for anticancer therapy-induced immunogenic cell death (ICD). Recent evidence suggests that chemotherapy-induced autophagy may positively regulate ICD by favoring ATP secretion. We have recently shown that reactive oxygen species (ROS)-based endoplasmic reticulum (ER) stress triggered by hypericin-mediated photodynamic therapy (Hyp-PDT) induces bona fide ICD. However, whether Hyp-PDT-induced autophagy regulates ICD was not explored. Here we showed that, in contrast to expectations, reducing autophagy (by ATG5 knockdown) in cancer cells did not alter ATP secretion after Hyp-PDT. Autophagy-attenuated cancer cells displayed enhanced ecto-CALR induction following Hyp-PDT, which strongly correlated with their inability to clear oxidatively damaged proteins. Furthermore, autophagy-attenuation in Hyp-PDT-treated cancer cells increased their ability to induce DC maturation, IL6 production and proliferation of CD4+ or CD8+ T cells, which was accompanied by IFNG production. Thus, our study unravels a role for ROS-induced autophagy in weakening functional interaction between dying cancer cells and the immune system thereby helping in evasion from ICD prerequisites or determinants.


Frontiers in Immunology | 2015

Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death

Abhishek D. Garg; Lorenzo Galluzzi; Lionel Apetoh; Thaïs Baert; Raymond B. Birge; José Manuel Bravo-San Pedro; Karine Breckpot; David Brough; Ricardo Chaurio; Mara Cirone; An Coosemans; Pierre G. Coulie; Dirk De Ruysscher; Luciana Dini; Peter de Witte; Aleksandra M. Dudek-Peric; Alberto Faggioni; Jitka Fucikova; Udo S. Gaipl; Jakub Golab; Marie Lise Gougeon; Michael R. Hamblin; Akseli Hemminki; Martin Herrmann; James W. Hodge; Oliver Kepp; Guido Kroemer; Dmitri V. Krysko; Walter G. Land; Frank Madeo

The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called “damage-associated molecular patterns” (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.


Cytokine & Growth Factor Reviews | 2013

Inducers of immunogenic cancer cell death

Aleksandra M. Dudek; Abhishek D. Garg; Dmitri V. Krysko; Dirk De Ruysscher; Patrizia Agostinis

Recently, cytokine-based pro-tumourigenic signalling has been found to play a major role in the immune systems pro-tumourigenic activity. On the other hand, other recent findings have shown that immunogenic cancer cell death triggered by certain anticancer modalities might reset the dysfunctional immune system towards the activation of a long-lasting protective anti-tumour response. Therefore, using inducers of immunogenic cell death (ICD) that can prevent or impede tumour-promoting cytokine signalling is one of the best ways of instigating or restoring efficient anti-tumour immunity. In this review it is discussed, how the different ICD inducers interact with the immune system and influence cytokine-based pro-tumourigenic signalling. We believe that it is crucial to discover or develop new anti-cancer therapeutic modalities that can induce ICD and impede tumour-promoting cytokine signalling.


Autophagy | 2012

Spatiotemporal autophagic degradation of oxidatively damaged organelles after photodynamic stress is amplified by mitochondrial reactive oxygen species.

N Rubio; Isabelle Coupienne; Emmanuel Di Valentin; Ingeborg Heirman; Johan Grooten; Jacques Piette; Patrizia Agostinis

Although reactive oxygen species (ROS) have been reported to evoke different autophagic pathways, how ROS or their secondary products modulate the selective clearance of oxidatively damaged organelles is less explored. To investigate the signaling role of ROS and the impact of their compartmentalization in autophagy pathways, we used murine fibrosarcoma L929 cells overexpressing different antioxidant enzymes targeted to the cytosol or mitochondria and subjected them to photodynamic (PD) stress with the endoplasmic reticulum (ER)-associated photosensitizer hypericin. We show that following apical ROS-mediated damage to the ER, predominantly cells overexpressing mitochondria-associated glutathione peroxidase 4 (GPX4) and manganese superoxide dismutase (SOD2) displayed attenuated kinetics of autophagosome formation and overall cell death, as detected by computerized time-lapse microscopy. Consistent with a primary ER photodamage, kinetics and colocalization studies revealed that photogenerated ROS induced an initial reticulophagy, followed by morphological changes in the mitochondrial network that preceded clearance of mitochondria by mitophagy. Overexpression of cytosolic and mitochondria-associated GPX4 retained the tubular mitochondrial network in response to PD stress and concomitantly blocked the progression toward mitophagy. Preventing the formation of phospholipid hydroperoxides and H2O2 in the cytosol as well as in the mitochondria significantly reduced cardiolipin peroxidation and apoptosis. All together, these results show that in response to apical ER photodamage ROS propagate to mitochondria, which in turn amplify ROS production, thereby contributing to two antagonizing processes, mitophagy and apoptosis.


Oncotarget | 2015

Resistance to anticancer vaccination effect is controlled by a cancer cell-autonomous phenotype that disrupts immunogenic phagocytic removal

Abhishek D. Garg; Sanne Elsen; Dmitri V. Krysko; Peter Vandenabeele; Peter de Witte; Patrizia Agostinis

Immunogenic cell death (ICD) is a well-established instigator of ‘anti-cancer vaccination-effect (AVE)’. ICD has shown considerable preclinical promise, yet there remain subset of cancer patients that fail to respond to clinically-applied ICD inducers. Non-responsiveness to ICD inducers could be explained by the existence of cancer cell-autonomous, anti-AVE resistance mechanisms. However such resistance mechanisms remain poorly investigated. In this study, we have characterized for the first time, a naturally-occurring preclinical cancer model (AY27) that exhibits intrinsic anti-AVE resistance despite treatment with ICD inducers like mitoxantrone or hypericin-photodynamic therapy. Further mechanistic analysis revealed that this anti-AVE resistance was associated with a defect in exposing the important ‘eat me’ danger signal, surface-calreticulin (ecto-CRT/CALR). In an ICD setting, this defective ecto-CRT further correlated with severely reduced phagocytic clearance of AY27 cells as well as the failure of these cells to activate AVE. Defective ecto-CRT in response to ICD induction was a result of low endogenous CRT protein levels (i.e. CRTlow-phenotype) in AY27 cells. Exogenous reconstitution of ecto-rCRT (recombinant-CRT) improved the phagocytic removal of ICD inducer-treated AY27 cells, and importantly, significantly increased their AVE-activating ability. Moreover, we found that a subset of cancer patients of various cancer-types indeed possessed CALRlow or CRTlow-tumours. Remarkably, we found that tumoural CALRhigh-phenotype was predictive of positive clinical responses to therapy with ICD inducers (radiotherapy and paclitaxel) in lung and ovarian cancer patients, respectively. Furthermore, only in the ICD clinical setting, tumoural CALR levels positively correlated with the levels of various phagocytosis-associated genes relevant for phagosome maturation or processing. Thus, we reveal the existence of a cancer cell-autonomous, anti-AVE or anti-ICD resistance mechanism that has profound clinical implications for anticancer immunotherapy and cancer predictive biomarker analysis.


Photochemistry and Photobiology | 2001

Cellular Photodestruction Induced by Hypericin in AY-27 Rat Bladder Carcinoma Cells

Appolinary R. Kamuhabwa; Patrizia Agostinis; Marie-Ange D'Hallewin; Luc Baert; Peter de Witte

Abstract In a recent clinical study we showed that hypericin accumulates selectively in urothelial lesions following intravesical administration of the compound to patients. In the present study the efficacy of hypericin as a photochemotherapeutic tool against urinary bladder carcinoma was investigated using the AY-27 cells (chemically induced rat bladder carcinoma cells). The uptake of hypericin by the cells increased by prolonging the incubation time and increasing the extracellular hypericin concentration. Photodynamic treatment of the cells incubated with 0.8 and 1.6 μM hypericin concentrations resulted in remarkable cytotoxic effects the extent of which depended on the fluence rates. Photoactivation of 1.6 μM hypericin by 0.5, 1.0 or 2.0 mW/cm2 for 15 min resulted in 3, 30 and 95% of the antiproliferative effect, respectively. Increasing the photoactivating light dose from 0.45 to 3.6 J/cm2 resulted in a five-fold increase in hypericin photodynamic activity. Irrespective of the fluence rates and irradiation times incubation of the cells with 10 μM hypericin induced rapid and extensive cell death in all conditions. The type of cell death (apoptosis or necrosis) induced by photoactivated hypericin depended largely on the hypericin concentration and the postirradiation time. At lower hypericin concentrations and shorter postirradiation times apoptosis was the prominent mode of cell death; increasing the hypericin concentration and/or prolonging the postirradiation time resulted in increased necrotic cell death. Cell pretreatment with the singlet oxygen quencher histidine, but not with the free-radical quenchers, significantly protected the cells from photoactivated hypericin–induced apoptosis, at least when a relatively low concentration (1.25 μM) was used. This result suggests the involvement of a Type-II photosensitization process. However, cells treated with higher hypericin concentrations (2.5–5 μM) were inadequately protected by histidine. Since hypericin is thus shown to be a potent and efficient photosensitizer, and since the conditions used were the same as when hypericin is used clinically to locate early-stage urothelial carcinoma lesions, hypericin may well become very important for the photodynamic treatment of superficial bladder carcinoma.

Collaboration


Dive into the Patrizia Agostinis's collaboration.

Top Co-Authors

Avatar

Abhishek D. Garg

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter de Witte

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Jakub Golab

Medical University of Warsaw

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aleksandra M. Dudek

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Mathieu

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Gabriela B Ferreira

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge