Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Amati-Bonneau is active.

Publication


Featured researches published by Patrizia Amati-Bonneau.


Brain | 2010

Multi-system neurological disease is common in patients with OPA1 mutations

Patrick Yu-Wai-Man; Philip G. Griffiths; Grainne S. Gorman; Charles Marques Lourenço; A. F. Wright; Michaela Auer-Grumbach; Antonio Toscano; Olimpia Musumeci; Maria Lucia Valentino; Leonardo Caporali; Costanza Lamperti; Chantal Tallaksen; P. Duffey; James Miller; Roger G. Whittaker; Mark R. Baker; Margaret Jackson; Michael P. Clarke; Baljean Dhillon; Birgit Czermin; Joanna D. Stewart; Gavin Hudson; Pascal Reynier; Dominique Bonneau; Wilson Marques; Guy Lenaers; Robert McFarland; Robert W. Taylor; Douglass M. Turnbull; Marcela Votruba

Additional neurological features have recently been described in seven families transmitting pathogenic mutations in OPA1, the most common cause of autosomal dominant optic atrophy. However, the frequency of these syndromal ‘dominant optic atrophy plus’ variants and the extent of neurological involvement have not been established. In this large multi-centre study of 104 patients from 45 independent families, including 60 new cases, we show that extra-ocular neurological complications are common in OPA1 disease, and affect up to 20% of all mutational carriers. Bilateral sensorineural deafness beginning in late childhood and early adulthood was a prominent manifestation, followed by a combination of ataxia, myopathy, peripheral neuropathy and progressive external ophthalmoplegia from the third decade of life onwards. We also identified novel clinical presentations with spastic paraparesis mimicking hereditary spastic paraplegia, and a multiple sclerosis-like illness. In contrast to initial reports, multi-system neurological disease was associated with all mutational subtypes, although there was an increased risk with missense mutations [odds ratio = 3.06, 95% confidence interval = 1.44–6.49; P = 0.0027], and mutations located within the guanosine triphosphate-ase region (odds ratio = 2.29, 95% confidence interval = 1.08–4.82; P = 0.0271). Histochemical and molecular characterization of skeletal muscle biopsies revealed the presence of cytochrome c oxidase-deficient fibres and multiple mitochondrial DNA deletions in the majority of patients harbouring OPA1 mutations, even in those with isolated optic nerve involvement. However, the cytochrome c oxidase-deficient load was over four times higher in the dominant optic atrophy + group compared to the pure optic neuropathy group, implicating a causal role for these secondary mitochondrial DNA defects in disease pathophysiology. Individuals with dominant optic atrophy plus phenotypes also had significantly worse visual outcomes, and careful surveillance is therefore mandatory to optimize the detection and management of neurological disability in a group of patients who already have significant visual impairment.


Nature Genetics | 2006

BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus

Corinne Stoetzel; Virginie Laurier; Erica E. Davis; Jean Muller; Suzanne Rix; Jose L. Badano; Carmen C. Leitch; Nabiha Salem; Eliane Chouery; Sandra Corbani; Nadine Jalk; Serge Vicaire; Pierre Sarda; Christian P. Hamel; Didier Lacombe; Muriel Holder; Sylvie Odent; Susan Holder; Alice S. Brooks; Nursel Elcioglu; Eduardo Silva; Béatrice Rossillion; Sabine Sigaudy; Thomy de Ravel; Richard Alan Lewis; Bruno Leheup; Alain Verloes; Patrizia Amati-Bonneau; André Mégarbané; Olivier Poch

Bardet-Biedl syndrome (BBS) is a genetically heterogeneous ciliopathy. Although nine BBS genes have been cloned, they explain only 40–50% of the total mutational load. Here we report a major new BBS locus, BBS10, that encodes a previously unknown, rapidly evolving vertebrate-specific chaperonin-like protein. We found BBS10 to be mutated in about 20% of an unselected cohort of families of various ethnic origins, including some families with mutations in other BBS genes, consistent with oligogenic inheritance. In zebrafish, mild suppression of bbs10 exacerbated the phenotypes of other bbs morphants.


Annals of Neurology | 2005

OPA1 R445H mutation in optic atrophy associated with sensorineural deafness

Patrizia Amati-Bonneau; Agnès Guichet; Aurélien Olichon; Arnaud Chevrollier; Frédérique Viala; Stéphanie Miot; Carmen Ayuso; Sylvie Odent; Catherine Arrouet; Christophe Verny; Marie‐Noelle Calmels; Gilles Simard; Pascale Belenguer; Jing Wang; Jean-Luc Puel; Christian P. Hamel; Yves Malthièry; Dominique Bonneau; Guy Lenaers; Pascal Reynier

The heterozygous R445H mutation in OPA1 was found in five patients with optic atrophy and deafness. Audiometry suggested that the sensorineural deafness resulted from auditory neuropathy. Skin fibroblasts showed hyperfragmentation of the mitochondrial network, decreased mitochondrial membrane potential, and adenosine triphosphate synthesis defect. In addition, OPA1 was found to be widely expressed in the sensory and neural cochlear cells of the guinea pig. Thus, optic atrophy and deafness may be related to energy defects due to a fragmented mitochondrial network. Ann Neurol 2005


Journal of Medical Genetics | 2010

MEF2C haploinsufficiency caused by either microdeletion of the 5q14.3 region or mutation is responsible for severe mental retardation with stereotypic movements, epilepsy and/or cerebral malformations

Nathalie Le Meur; Muriel Holder-Espinasse; Sylvie Jaillard; Alice Goldenberg; Sylvie Joriot; Patrizia Amati-Bonneau; Agnès Guichet; Magalie Barth; Aude Charollais; Hubert Journel; Stéphane Auvin; Cécile Boucher; Jean-Pierre Kerckaert; Véronique David; Sylvie Manouvrier-Hanu; Pascale Saugier-Veber; Thierry Frebourg; Christèle Dubourg; Joris Andrieux; Dominique Bonneau

Background Over the last few years, array-comparative genomic hybridisation (CGH) has considerably improved our ability to detect cryptic unbalanced rearrangements in patients with syndromic mental retardation. Method Molecular karyotyping of six patients with syndromic mental retardation was carried out using whole-genome oligonucleotide array-CGH. Results 5q14.3 microdeletions ranging from 216 kb to 8.8 Mb were detected in five unrelated patients with the following phenotypic similarities: severe mental retardation with absent speech, hypotonia and stereotypic movements. Facial dysmorphic features, epilepsy and/or cerebral malformations were also present in most of these patients. The minimal common deleted region of these 5q14 microdeletions encompassed only MEF2C, the gene for a protein known to act in brain as a neurogenesis effector, which regulates excitatory synapse number. In a patient with a similar phenotype, an MEF2C nonsense mutation was subsequently identified. Conclusion Taken together, these results strongly suggest that haploinsufficiency of MEF2C is responsible for severe mental retardation with stereotypic movements, seizures and/or cerebral malformations.


Journal of Medical Genetics | 2004

OPA3 gene mutations responsible for autosomal dominant optic atrophy and cataract

Pascal Reynier; Patrizia Amati-Bonneau; C Verny; A Olichon; G Simard; A Guichet; C Bonnemains; F Malecaze; M C Malinge; J B Pelletier; P Calvas; Hélène Dollfus; P Belenguer; Y Malthièry; G Lenaers; Dominique Bonneau

Hereditary optic atrophy is a generic term that refers to a heterogeneous group of genetic disorders for which several modes of inheritance have been described.1 The most common forms of optic atrophy are autosomal dominant optic atrophy (ADOA, OMIM 165500) and Leber’s hereditary optic neuropathy (LHON, OMIM 53500). ADOA, which generally starts in childhood, is characterised by a progressive decrease in visual acuity, blue-yellow dyschromatopsia, loss of sensitivity in the central visual field, and optic nerve pallor. Mutations in the optic atrophy 1 ( OPA1 ) gene, located on chromosome 3q28–q29, are implicated in about 60–80% of the cases of ADOA.1–4 OPA1 encodes for a mitochondrial dynamin related protein. This protein, anchored to the mitochondrial inner membrane, contributes to mitochondrial structure and biogenesis.5,6 A second gene involved in ADOA, not yet identified, has been mapped to chromosome 18q ( OPA4 , OMIM 605293).7 LHON, which is caused by specific mutations in mitochondrial DNA, is inherited maternally.8 It is characterised by severe bilateral optic atrophy responsible for acute or subacute visual loss, usually starting between the ages of 18 and 35. Other forms of hereditary optic atrophy include X linked optic atrophy (XLAO, OPA2 , OMIM 311050)9 and autosomal recessive optic atrophy (AROA), for which a first locus has recently been mapped to chromosome 8q.10 Finally, more than 15 disorders—mostly inherited in the autosomal recessive mode—have combined optic atrophy and extraocular anomalies. Among these syndromic optic atrophies, type III 3-methylglutaconic aciduria (MGA) (OMIM 258501), also known as the Costeff syndrome11 or the optic atrophy plus syndrome, consists of early onset bilateral optic atrophy, later onset spasticity, extrapyramidal signs, and cognitive deficit. Urinary excretion of 3-methyl glutaconic acid and increased plasma 3-methylglutaric acid levels are the hallmarks of MGA.12 Linkage analyses, undertaken in MGA …


Journal of Cellular Physiology | 2007

EFFECTS OF OPA1 MUTATIONS ON MITOCHONDRIAL MORPHOLOGY AND APOPTOSIS: RELEVANCE TO ADOA PATHOGENESIS *

Aurélien Olichon; Thomas Landes; Laetitia Arnauné-Pelloquin; Laurent J. Emorine; Valérie Mils; Agnès Guichet; Cécile Delettre; Christian P. Hamel; Patrizia Amati-Bonneau; Dominique Bonneau; Pascal Reynier; Guy Lenaers; Pascale Belenguer

To characterize the molecular links between type‐1 autosomal dominant optic atrophy (ADOA) and OPA1 dysfunctions, the effects of pathogenic alleles of this dynamin on mitochondrial morphology and apoptosis were analyzed, either in fibroblasts from affected individuals, or in HeLa cells transfected with similar mutants. The alleles were missense substitutions in the GTPase domain (OPA1G300E and OPA1R290Q) or deletion of the GTPase effector domain (OPA1Δ58). Fragmentation of mitochondria and apoptosis increased in OPA1R290Q fibroblasts and in OPA1G300E transfected HeLa cells. OPA1Δ58 did not influence mitochondrial morphology, but increased the sensitivity to staurosporine of fibroblasts. In these cells, the amount of OPA1 protein was half of that in control fibroblasts. We conclude that GTPase mutants exert a dominant negative effect by competing with wild‐type alleles to integrate into fusion‐competent complexes, whereas C‐terminal truncated alleles act by haplo‐insufficiency. We present a model where antagonistic fusion and fission forces maintain the mitochondrial network, within morphological limits that are compatible with cellular functions. In the retinal ganglion cells (RGCs) of patients suffering from type‐1 ADOA, OPA1‐driven fusion cannot adequately oppose fission, thereby rendering them more sensitive to apoptotic stimuli and eventually leading to optic nerve degeneration. J. Cell. Physiol. 211: 423–430, 2007.


Annals of Neurology | 2008

Hereditary optic neuropathies share a common mitochondrial coupling defect

Arnaud Chevrollier; Virginie Guillet; Dominique Loiseau; Naïg Gueguen; Marie-Anne Pou de Crescenzo; Christophe Verny; Marc Ferré; Hélène Dollfus; Sylvie Odent; Dan Milea; Cyril Goizet; Patrizia Amati-Bonneau; Vincent Procaccio; Dominique Bonneau; Pascal Reynier

Hereditary optic neuropathies are heterogeneous diseases characterized by the degeneration of retinal ganglion cells leading to optic nerve atrophy and impairment of central vision. We found a common coupling defect of oxidative phosphorylation in fibroblasts of patients affected by autosomal dominant optic atrophy (mutations of OPA1), autosomal dominant optic atrophy associated with cataract (mutations of OPA3), and Lebers hereditary optic neuropathy, a disorder associated with point mutations of mitochondrial DNA complex I genes. Interestingly, the energetic defect was significantly more pronounced in Lebers hereditary optic neuropathy and autosomal dominant optic atrophy patients with a more complex phenotype, the so‐called plus phenotype. Ann Neurol 2008


Human Mutation | 2009

Molecular screening of 980 cases of suspected hereditary optic neuropathy with a report on 77 novel OPA1 mutations.

Marc Ferré; Dominique Bonneau; Dan Milea; Arnaud Chevrollier; Christophe Verny; Hélène Dollfus; Carmen Ayuso; Sabine Defoort; Catherine Vignal; Xavier Zanlonghi; Jean‐Francois Charlin; Josseline Kaplan; Sylvie Odent; Christian P. Hamel; Vincent Procaccio; Pascal Reynier; Patrizia Amati-Bonneau

We report the results of molecular screening in 980 patients carried out as part of their work‐up for suspected hereditary optic neuropathies. All the patients were investigated for Lebers hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), by searching for the ten primary LHON‐causing mtDNA mutations and examining the entire coding sequences of the OPA1 and OPA3 genes, the two genes currently identified in ADOA. Molecular defects were identified in 440 patients (45% of screened patients). Among these, 295 patients (67%) had an OPA1 mutation, 131 patients (30%) had an mtDNA mutation, and 14 patients (3%), belonging to three unrelated families, had an OPA3 mutation. Interestingly, OPA1 mutations were found in 157 (40%) of the 392 apparently sporadic cases of optic atrophy. The eOPA1 locus‐specific database now contains a total of 204 OPA1 mutations, including 77 novel OPA1 mutations reported here. The statistical analysis of this large set of mutations has led us to propose a diagnostic strategy that should help with the molecular work‐up of optic neuropathies. Our results highlight the importance of investigating LHON‐causing mtDNA mutations as well as OPA1 and OPA3 mutations in cases of suspected hereditary optic neuropathy, even in absence of a family history of the disease.


Annals of Neurology | 2007

Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease.

Dominique Loiseau; Arnaud Chevrollier; Christophe Verny; Virginie Guillet; Naïg Gueguen; Marie-Anne Pou de Crescenzo; Marc Ferré; Marie-Claire Malinge; Agnès Guichet; Guillaume Nicolas; Patrizia Amati-Bonneau; Yves Malthièry; Dominique Bonneau; Pascal Reynier

Mutations of the mitofusin 2 gene (MFN2) may account for at least a third of the cases of Charcot–Marie–Tooth disease type 2 (CMT2). This study investigates mitochondrial cellular bioenergetics in MFN2‐related CMT2A.


Orphanet Journal of Rare Diseases | 2012

Dominant optic atrophy

Guy Lenaers; Christian P. Hamel; Cécile Delettre; Patrizia Amati-Bonneau; Vincent Procaccio; Dominique Bonneau; Pascal Reynier; Dan Milea

Definition of the diseaseDominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain.EpidemiologyThe prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world.Clinical descriptionDOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts.AetiologyTwo genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy. All OPA genes yet identified encode mitochondrial proteins embedded in the inner membrane and ubiquitously expressed, as are the proteins mutated in the Leber Hereditary Optic Neuropathy. OPA1 mutations affect mitochondrial fusion, energy metabolism, control of apoptosis, calcium clearance and maintenance of mitochondrial genome integrity. OPA3 mutations only affect the energy metabolism and the control of apoptosis.DiagnosisPatients are usually diagnosed during their early childhood, because of bilateral, mild, otherwise unexplained visual loss related to optic discs pallor or atrophy, and typically occurring in the context of a family history of DOA. Optical Coherence Tomography further discloses non-specific thinning of retinal nerve fiber layer, but a normal morphology of the photoreceptors layers. Abnormal visual evoked potentials and pattern ERG may also reflect the dysfunction of the RGCs and their axons. Molecular diagnosis is provided by the identification of a mutation in the OPA1 gene (75% of DOA patients) or in the OPA3 gene (1% of patients).PrognosisVisual loss in DOA may progress during puberty until adulthood, with very slow subsequent chronic progression in most of the cases. On the opposite, in DOA patients with associated extra-ocular features, the visual loss may be more severe over time.ManagementTo date, there is no preventative or curative treatment in DOA; severely visually impaired patients may benefit from low vision aids. Genetic counseling is commonly offered and patients are advised to avoid alcohol and tobacco consumption, as well as the use of medications that may interfere with mitochondrial metabolism. Gene and pharmacological therapies for DOA are currently under investigation.

Collaboration


Dive into the Patrizia Amati-Bonneau's collaboration.

Researchain Logo
Decentralizing Knowledge