Patrizia Ballarini
University of Camerino
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrizia Ballarini.
Carcinogenesis | 2009
Consuelo Amantini; Patrizia Ballarini; Sara Caprodossi; Massimo Nabissi; Maria Beatrice Morelli; Roberta Lucciarini; Marco Andrea Cardarelli; Gabriele Mammana; Giorgio Santoni
Herein, we provide evidence on the expression of transient receptor potential vanilloid type 1 (TRPV1) on human urothelial cancer (UC) cells and its involvement in the apoptosis induced by the selective agonist capsaicin (CPS). We analyzed TRPV1 messenger RNA and protein expression on human UC cell lines demonstrating its progressive decrease in high-grade UC cells. Treatment of RT4 cells with CPS induced cell cycle arrest in G(0)/G(1) phase and apoptosis. These events were associated with rapid co-ordinated transcription of pro-apoptotic genes including Fas/CD95, Bcl-2 and caspase families and ataxia telangiectasia mutated (ATM)/CHK2/p53 DNA damage response pathway. CPS induced Fas/CD95 upregulation, but more importantly Fas/CD95 ligand independent, TRPV1-dependent death receptor clustering and triggering of both extrinsic and intrinsic mitochondrial-dependent pathways. Moreover, we observed that CPS activates ATM kinase that is involved in Ser15, Ser20 and Ser392 p53 phosphorylation as shown by the use of the specific inhibitor KU55933. Notably, ATM activation was also found to control upregulation of Fas/CD95 expression and its co-clustering with TRPV1 as well as RT4 cell growth and apoptosis. Altogether, we describe a novel connection between ATM DNA damage response pathway and Fas/CD95-mediated intrinsic and extrinsic apoptotic pathways triggered by TRPV1 stimulation on UC cells.
European Journal of Clinical Microbiology & Infectious Diseases | 2006
Dezemona Petrelli; Claudia Zampaloni; Stefania D'Ercole; Manuela Prenna; Patrizia Ballarini; Sandro Ripa; Luca Agostino Vitali
The aim of the present study was to characterize clinical isolates of Staphylococcus epidermidis, one of the bacterial species most often implicated in foreign-body-associated infections, for their ability to form biofilms and for the presence of mecA and IS256 element. Sixty-seven Staphylococcus epidermidis clinical isolates, obtained from implantable medical devices, were investigated. Overall, 70% of the strains were positive for ica operon genes, 85% possessed atlE, and 46% contained aap. In 89% of the population, the Congo red agar test confirmed the correlation between the presence of ica genes and slime expression. Almost all of the strains could be classified as biofilm producers by both the crystal violet assay and microscopy. The bacterial population studied showed a very high frequency of strains positive for mecA as well as for the IS256 element. Although well-structured biofilms have been previously observed only in those strains possessing genes belonging to the ica operon, this study demonstrates that strains lacking specific biofilm-formation determinants can be isolated from catheters and can form a biofilm in vitro. Hence, different and yet-to-be identified factors may work together in the formation and organization of complex staphylococcal microbial communities and sustain infections associated with implanted medical devices.
Cytoskeleton | 1997
Sandra Pucciarelli; Patrizia Ballarini; Cristina Miceli
In cold poikilotherm organisms, microtubule assembly is promoted at temperatures below 4 degrees C and cold-induced depolymerization is prevented. On the basis of the results of investigations on cold-adapted fishes, the property of cold adaptation is ascribed to intrinsic characteristics of the tubulins. To fully understand cold adaptation, we studied the tubulins of Euplotes focardii, an Antarctic ciliated protozoan adapted to temperatures ranging from -2 to +4 degrees C. In this organism, we had previously sequenced one beta-tubulin gene and, then identified three other genes (denoted as beta-T1, beta-T2, beta-T3 and beta-T4). Here we report that the amino acid sequence of the carboxy-terminal domain predicted from the beta-T3 gene (apparently the most expressed of the gene family) contains six modifications (five substitutions and one insertion) of conserved residues, unique with respect to all the other known beta-tubulin sequences. These modifications can change the structural conformation of the carboxy-terminal domain. Furthermore, in the variable terminal end of that domain, a consensus sequence for a phosphorylation site is present, and the residue Glu-438, the most frequent site for polyglutamylation in beta-tubulin, is substituted by Asp. Starting from these observations, we showed that in E. focardii only alpha-tubulin is polyglutamylated, while beta-tubulin undergoes phosphorylation. Polyglutamylated microtubules appear to colocalize with cilia and microtubular bundles, all structures in which microtubules undergo a sliding process. This finding supports the idea that alpha-tubulin polyglutamylation is involved in the interaction between tubulin and motor microtubule-associated proteins. Phosphorylation, usually a rare posttranslational modification of beta-tubulin, which is found extensively distributed in the beta-tubulin of this cold-adapted organism, may play a determinant role in the dynamic of polymerization and depolymerization at low temperatures.
Eukaryotic Cell | 2005
Adriana Vallesi; Patrizia Ballarini; Barbara Di Pretoro; Claudio Alimenti; Cristina Miceli; Pierangelo Luporini
ABSTRACT The ciliate Euplotes raikovi produces a family of diffusible signal proteins (pheromones) that function as prototypic growth factors. They may either promote cell growth, by binding to pheromone receptors synthesized by the same cells from which they are secreted (autocrine activity), or induce a temporary cell shift from the growth stage to a mating (sexual) one by binding to pheromone receptors of other, conspecific cells (paracrine activity). In cells constitutively secreting the pheromone Er-1, it was first observed that the expression of the Er-1 receptor “p15,” a type II membrane protein of 130 amino acids, is quantitatively correlated with the extracellular concentration of secreted pheromone. p15 expression on the cell surface rapidly and markedly increased after the removal of secreted Er-1 and gradually decreased in parallel with new Er-1 secretion. It was then shown that p15 is internalized through endocytic vesicles following Er-1 binding and that the internalization of p15/Er-1 complexes is specifically blocked by the paracrine p15 binding of Er-2, a pheromone structurally homologous to, and thus capable of fully antagonizing, Er-1. Based on previous findings that the p15 pheromone-binding site is structurally equivalent to Er-1 and that Er-1 molecules polymerize in crystals following a pattern of cooperative interaction, it was proposed that p15/Er-1 complexes are internalized as a consequence of their unique property (not shared by p15/Er-2 complexes) of undergoing clustering.
Biochimica et Biophysica Acta | 2000
Luca Tiano; Patrizia Ballarini; Giorgio Santoni; Michal Wozniak; Giancarlo Falcioni
Density separated trout erythrocytes, using a discontinuous Percoll gradient, yielded three distinct subfractions (top, middle and bottom) since older cells are characterized by increasing density. Cells from each subfraction were incubated with mitochondria-specific fluorescent probe Mitotracker and JC-1 in order to assess mitochondrial mass and membrane potential by means of cytofluorimetric analysis, confocal microscopy and subsequent computer-aided image analysis allowing a detailed investigation at single cell level. Both cytofluorimetric data and image analysis revealed changes in size and redistribution of mitochondria starting from the light fraction to the bottom. In particular in young erythrocytes small mitochondria were detected localized exclusively around the nucleus in a crown-like shape, the middle fraction revealed enlarged mitochondria partially scattered throughout the cytosol, whereas the last fraction represented again mitochondria with reduced size being distinctly dispersed throughout the cytosol in the cells. Concerning membrane potential considerations, our study revealed a dramatic decrease of DeltaPsi(m) in the bottom layer cell mitochondria compared to the top and unusual membrane potential increase of a subpopulation of enlarged mitochondria. DeltapH was also investigated in the three fractions by pretreating the cells with nigericin, allowing to confirm a mitochondrial energetic impairment in older cells.
Proteins | 2012
Federica Chiappori; Sandra Pucciarelli; Ivan Merelli; Patrizia Ballarini; Cristina Miceli; Luciano Milanesi
Tubulin dimers of psychrophilic eukaryotes can polymerize into microtubules at 4°C, a temperature at which microtubules from mesophiles disassemble. This unique capability requires changes in the primary structure and/or in post‐translational modifications of the tubulin subunits. To contribute to the understanding of mechanisms responsible for microtubule cold stability, here we present a computational structural analysis based on molecular dynamics (MD) and experimental data of three β‐tubulin isotypes, named EFBT2, EFBT3, and EFBT4, from the Antarctic protozoon Euplotes focardii that optimal temperature for growth and reproduction is 4°C. In comparison to the β‐tubulin from E. crassus, a mesophilic Euplotes species, EFBT2, EFBT3, and EFBT4 possess unique amino acid substitutions that confer different flexible properties of the polypeptide, as well as an increased hydrophobicity of the regions involved in microtubule interdimeric contacts that may overcome the microtubule destabilizing effect of cold temperatures. The structural analysis based on MD indicated that all isotypes display different flexibility properties in the regions involved in the formation of longitudinal and lateral contacts during microtubule polymerization. We also investigated the role of E. focardii β‐tubulin isotypes during the process of cilia formation. The unique characteristics of the primary and tertiary structures of psychrophilic β‐tubulin isotypes seem responsible for the formation of microtubules with distinct dynamic and functional properties. Proteins 2012;.
FEBS Journal | 2008
Francesca Marziale; Sandra Pucciarelli; Patrizia Ballarini; Ronald Melki; Alper Uzun; Valentin A. Ilyin; H. W. Detrich; Cristina Miceli
γ‐Tubulin belongs to the tubulin superfamily and plays an essential role in the nucleation of cellular microtubules. In the present study, we report the characterization of γ‐tubulin from the psychrophilic Antarctic ciliate Euplotes focardii. In this organism, γ‐tubulin is encoded by two genes, γ‐T1 and γ‐T2, that produce distinct isotypes. Comparison of the γ‐T1 and γ‐T2 primary sequences to a Euplotesγ‐tubulin consensus, derived from mesophilic (i.e. temperate) congeneric species, revealed the presence of numerous unique amino acid substitutions, particularly in γ‐T2. Structural models of γ‐T1 and γ‐T2, obtained using the 3D structure of human γ‐tubulin as a template, suggest that these substitutions are responsible for conformational and/or polarity differences located: (a) in the regions involved in longitudinal ‘plus end’ contacts; (b) in the T3 loop that participates in binding GTP; and (c) in the M loop that forms lateral interactions. Relative to γ‐T1, the γ‐T2 gene is amplified by approximately 18‐fold in the macronuclear genome and is very strongly transcribed. Using confocal immunofluorescence microscopy, we found that the γ‐tubulins of E. focardii associate throughout the cell cycle with basal bodies of the non‐motile dorsal cilia and of all of the cirri of the ventral surface (i.e. adoral membranelles, paraoral membrane, and frontoventral transverse, caudal and marginal cirri). By contrast, only γ‐T2 interacts with the centrosomes of the spindle during micronuclear mitosis. We also established that the γ‐T1 isotype associates only with basal bodies. Our results suggest that γ‐T1 and γ‐T2 perform different functions in the organization of the microtubule cytoskeleton of this protist and are consistent with the hypothesis that γ‐T1 and γ‐T2 have evolved sequence‐based structural alterations that facilitate template nucleation of microtubules by the γ‐tubulin ring complex at cold temperatures.
Eukaryotic Cell | 2008
Sabrina Barchetta; Antonietta La Terza; Patrizia Ballarini; Sandra Pucciarelli; Cristina Miceli
ABSTRACT The induction of heat shock genes (HSPs) is thought to be primarily regulated by heat shock transcription factors (HSFs), which bind target sequences on HSP promoters, called heat shock elements (HSEs). In this study, we investigated the 5′ untranslated regions of the Tetrahymena thermophila HSP70-1 gene, and we found, in addition to the canonical and divergent HSEs, multiple sets of GATA elements that have not been reported previously in protozoa. By means of in vivo analysis of a green fluorescent protein reporter transgene driven by the HSP70-1 promoter, we demonstrate that HSEs do not represent the minimal regulatory elements for heat shock induction, since the HSP70-1 is tightly regulated by both HSE and GATA elements. Electrophoretic mobility shift assay also showed that HSFs are constitutively bound to the HSEs, whereas GATA elements are engaged only after heat shock. This is the first demonstration by in vivo analysis of functional HSE and GATA elements in protozoa. Furthermore, we provide evidence of a functional link between HSE and GATA elements in the activation of the heat shock response.
Biochimica et Biophysica Acta | 2001
Luca Tiano; Donatella Fedeli; Patrizia Ballarini; Giorgio Santoni; Giancarlo Falcioni
Previous literature reports have demonstrated that nucleated trout erythrocytes in condition of oxidative stress are subjected to DNA and membrane damage, and inactivation of glutathione peroxidase. The present study was undertaken to investigate if mitochondrial membrane potential in stressed conditions was also influenced. Density-separated trout erythrocyte fractions, obtained using a discontinuous Percoll gradient, were submitted to stress conditions and the mitochondrial membrane potential was determined by means of cytofluorimetric analysis after incubation of each subfraction with JC-1, a mitochondrial specific fluorescent probe. The results clearly show that the mitochondrial membrane potential decreased significantly in all erythrocyte fractions, also if the oxidative effect on mitochondria is more severe with increased density (age) of the cell. Ebselen was very effective in preventing mitochondrial depolarization in young as well as in old erythrocytes.
Protist | 2010
Adriana Vallesi; Barbara Di Pretoro; Patrizia Ballarini; Fabio Apone; Pierangelo Luporini
In the free-living ciliate Euplotes raikovi, we identified (and designated as Er-MAPK1) a protein kinase of 631 amino acids, that appears to be constantly phosphorylated in cells which are in growth stage and interact in autocrine fashion with their water-soluble signal pheromones. Er-MAPK1 is specified by a gene that requires a+1 translational frame-shift to be expressed. Its amino-terminal region represents a canonical catalytic domain and carries an activation loop distinctive of the mitogen-activated protein kinases, with the Thr-Asp-Tyr motif deputed to be site of double phosphorylation. In contrast, the carboxy-terminal region appears to be structurally unique. It shows a strongly basic amino acid composition, is very rich in glycine repetitions, and contains a bipartite signal for translocation of Er-MAPK1 into the nucleus.