Patrizia Caposio
Oregon Health & Science University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Patrizia Caposio.
PLOS Pathogens | 2011
Mahadevaiah Umashankar; Alex Petrucelli; Louis Cicchini; Patrizia Caposio; Craig N. Kreklywich; Michael Rak; Farah Bughio; Devorah C. Goldman; Kimberly L. Hamlin; Jay A. Nelson; William H. Fleming; Daniel N. Streblow; Felicia Goodrum
Clinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb′ that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb′-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus. This work represents the first characterization of these proteins and identifies a role for this locus in infection. Similar to pUL138, pUL133, pUL135, and pUL136 are integral membrane proteins that partially co-localized with pUL138 in the Golgi during productive infection in fibroblasts. As expected of ULb′ sequences, the UL133-UL138 locus was dispensable for replication in cultured fibroblasts. In CD34+ HPCs, this locus suppressed viral replication in HPCs, an activity attributable to both pUL133 and pUL138. Strikingly, the UL133-UL138 locus was required for efficient replication in endothelial cells. The association of this locus with three context-dependent phenotypes suggests an exciting role for the UL133-UL138 locus in modulating the outcome of viral infection in different contexts of infection. Differential profiles of protein expression from the UL133-UL138 locus correlated with the cell-type dependent phenotypes associated with this locus. We extended our in vitro findings to analyze viral replication and dissemination in a NOD-scid IL2Rγc null-humanized mouse model. The UL133-UL138 NULL virus exhibited an increased capacity for replication and/or dissemination following stem cell mobilization relative to the wild-type virus, suggesting an important role in viral persistence and spread in the host. As pUL133, pUL135, pUL136, and pUL138 are conserved in virus strains infecting higher order primates, but not lower order mammals, the functions encoded likely represent host-specific viral adaptations.
Blood | 2011
Sara Botto; Daniel N. Streblow; Victor R. DeFilippis; Laura K. White; Craig N. Kreklywich; Patricia P. Smith; Patrizia Caposio
Human cytomegalovirus (HCMV) is linked to the acceleration of vascular diseases such as atherosclerosis and transplant vasculopathy. One of the hallmarks of these diseases is angiogenesis (AG) and neovessel formation. Endothelial cells (ECs) are an integral part of AG and are sites of HCMV persistence. AG requires multiple synchronous processes that include EC proliferation, migration, and vessel stabilization. Virus-free supernatant (secretome) from HCMV-infected ECs induces AG. To identify factor(s) involved in this process, we performed a human cytokine array. Several cytokines were significantly induced in the HCMV secretomes including interleukin-6 (IL-6), granulocyte macrophage colony-stimulating factor, and IL-8/CXCL8. Using in vitro AG assays, neutralization of IL-6 significantly reduced neovessel formation. Addition of the HCMV secretome to preformed vessels extended neovessel survival, but this effect was blocked by neutralization of IL-6. In these cells, IL-6 prevented apoptosis by blocking caspase-3 and -7 activation through the induction of survivin. Neutralization of IL-6 receptor on ECs abolished the ability of HCMV secretome to increase survivin expression and activated effector caspases. Moreover, survivin shRNA expression induced rapid regression of tubule capillary networks in ECs stimulated with HCMV secretome and activated effector caspases. These observations may explain how CMV accelerates vascular disease despite limited infection in tissues.
PLOS Neglected Tropical Diseases | 2011
Yoshimi Tsuda; Patrizia Caposio; Christopher J. Parkins; Sara Botto; Ilhem Messaoudi; Luka Cicin-Sain; Heinz Feldmann; Michael A. Jarvis
Background Human outbreaks of Ebola virus (EBOV) are a serious human health concern in Central Africa. Great apes (gorillas/chimpanzees) are an important source of EBOV transmission to humans due to increased hunting of wildlife including the ‘bush-meat’ trade. Cytomegalovirus (CMV) is an highly immunogenic virus that has shown recent utility as a vaccine platform. CMV-based vaccines also have the unique potential to re-infect and disseminate through target populations regardless of prior CMV immunity, which may be ideal for achieving high vaccine coverage in inaccessible populations such as great apes. Methodology/Principal Findings We hypothesize that a vaccine strategy using CMV-based vectors expressing EBOV antigens may be ideally suited for use in inaccessible wildlife populations. To establish a ‘proof-of-concept’ for CMV-based vaccines against EBOV, we constructed a mouse CMV (MCMV) vector expressing a CD8+ T cell epitope from the nucleoprotein (NP) of Zaire ebolavirus (ZEBOV) (MCMV/ZEBOV-NPCTL). MCMV/ZEBOV-NPCTL induced high levels of long-lasting (>8 months) CD8+ T cells against ZEBOV NP in mice. Importantly, all vaccinated animals were protected against lethal ZEBOV challenge. Low levels of anti-ZEBOV antibodies were only sporadically detected in vaccinated animals prior to ZEBOV challenge suggesting a role, at least in part, for T cells in protection. Conclusions/Significance This study demonstrates the ability of a CMV-based vaccine approach to protect against an highly virulent human pathogen, and supports the potential for ‘disseminating’ CMV-based EBOV vaccines to prevent EBOV transmission in wildlife populations.
Virus Research | 2011
Patrizia Caposio; Susan L. Orloff; Daniel N. Streblow
Human cytomegalovirus (HCMV) infection has been associated with the acceleration of vascular disease including atherosclerosis and transplant associated vasculopathy in solid organ transplants. HCMV promotes vascular disease at many of the different stages of the disease development. These include the initial injury phase, enhancing the response to injury and inflammation, as well as by increasing SMC hyperplasia and foamy macrophage cell formation. Angiogenesis is a critical process involved in the development of vascular diseases. Recently, HCMV has been shown to induce angiogenesis and this process is thought to contribute to HCMV-accelerated vascular disease and may also be important for HCMV-enhanced tumor formation. This review will highlight the role of HCMV in promoting angiogenesis.
European Journal of Immunology | 2010
Rossella Baggetta; Marco De Andrea; Grazia Rosaria Gariano; Michele Mondini; Massimo Rittà; Patrizia Caposio; Paola Cappello; Mirella Giovarelli; Marisa Gariglio; Santo Landolfo
The IFN‐inducible human IFI16 gene is highly expressed in endothelial cells as well as epithelial and hematopoietic tissues. Previous gene array analysis of human umbilical vein endothelial cells overexpressing IFI16 has revealed an increased expression of genes involved in inflammation and apoptosis. In this study, protein array analysis of the IFI16 secretome showed an increased production of chemokines, cytokines and adhesion molecules responsible for leukocyte chemotaxis. Functional analysis of the promoter for CCL20, the chemokine responsible for leukocyte recruitment in the early steps of inflammation, by site‐specific mutation demonstrated that NF‐κB is the main mediator of CCL20 induction at the transcriptional level. Finally, both Langerhans DC and B‐lymphocyte migration triggered by supernatants from IFI16‐overexpressing endothelial cells was partially inhibited by Ab inactivating CCL4, CCL5 and CCL20 chemokines. Altogether, these results demonstrate that the IFI16 gene, through its secretome, regulates proinflammatory activity of endothelial cells, thus corroborating its role in the early steps of inflammation.
Journal of Immunotherapy | 2012
Elena N. Klyushnenkova; Diana V. Kouiavskaia; Christopher J. Parkins; Patrizia Caposio; Sara Botto; Richard B. Alexander; Michael A. Jarvis
Cytomegalovirus (CMV) is a highly immunogenic virus that results in a persistent, life-long infection in the host typically with no ill effects. Certain unique features of CMV, including its capacity to actively replicate in the presence of strong host CMV-specific immunity, may give CMV an advantage compared with other virus-based vaccine delivery platforms. In the present study, we tested the utility of mouse CMV (mCMV)-based vaccines expressing human prostate-specific antigen (PSA) for prostate cancer immunotherapy in double-transgenic mice expressing PSA and HLA-DRB1*1501 (DR2bxPSA F1 mice). We assessed the capacity of 2 mCMV-based vectors to induce PSA-specific CD8 T-cell responses and affect the growth of PSA-expressing Transgenic Adenocarcinoma of the Mouse Prostate tumors (TRAMP-PSA). In the absence of tumor challenge, immunization with mCMV vectors expressing either a H2-Db-restricted epitope PSA65–73 (mCMV/PSA65–73) or the full-length gene for PSA (mCMV/PSAFL) induced comparable levels of CD8 T-cell responses that increased (inflated) with time. Upon challenge with TRAMP-PSA tumor cells, animals immunized with mCMV/PSA65–73 had delay of tumor growth and increased PSA-specific CD8 T-cell responses, whereas animals immunized with mCMV/PSAFL showed progressive tumor growth and no increase in number of splenic PSA65–73-specific T cells. The data show that a prototype CMV-based prostate cancer vaccine can induce an effective antitumor immune response in a “humanized” double-transgenic mouse model. The observation that mCMV/PSAFL is not effective against TRAMP-PSA is consistent with our previous findings that HLA-DRB1*1501-restricted immune responses to PSA are associated with suppression of effective CD8 T-cell responses to TRAMP-PSA tumors.
Mbio | 2016
Katie Caviness; Farah Bughio; Lindsey Crawford; Daniel N. Streblow; Jay A. Nelson; Patrizia Caposio; Felicia Goodrum
ABSTRACT Human cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms. We previously showed that the UL136 isoforms are largely dispensable for virus infection in fibroblasts, a model for productive virus replication. In our current work, UL136 has emerged as a complex regulator of HCMV infection in multiple contexts of infection relevant to HCMV persistence: in an endothelial cell (EC) model of chronic infection, in a CD34+ hematopoietic progenitor cell (HPC) model of latency, and in an in vivo NOD-scid IL2Rγcnull humanized (huNSG) mouse model for latency. The 33- and 26-kDa isoforms promote replication, while the 23- and 19-kDa isoforms suppress replication in ECs, in CD34+ HPCs, and in huNSG mice. The role of the 25-kDa isoform is context dependent and influences the activity of the other isoforms. These isoforms localize throughout the secretory pathway, and loss of the 33- and 26-kDa UL136 isoforms results in virus maturation defects in ECs. This work reveals an intriguing functional interplay between protein isoforms that impacts virus replication, latency, and dissemination, contributing to the overall role of the UL133/8 locus in HCMV infection. IMPORTANCE The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by the UL136 gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay between UL136 protein isoforms and define UL136 as an important regulator of HCMV persistence. The persistence of DNA viruses, and particularly of herpesviruses, remains an enigma because we have not completely defined the viral and host factors important to persistence. Human cytomegalovirus, a herpesvirus, persists in the absence of disease in immunocompetent individuals but poses a serious disease threat to transplant patients and the developing fetus. There is no vaccine, and current therapies do not target latent reservoirs. In an effort to define the viral factors important to persistence, we have studied viral genes with no known viral replication function in contexts important to HCMV persistence. Using models relevant to viral persistence, we demonstrate opposing roles of protein isoforms encoded by the UL136 gene in regulating latent and replicative states of infection. Our findings reveal an intriguing interplay between UL136 protein isoforms and define UL136 as an important regulator of HCMV persistence.
Mbio | 2014
Jason D. MacManiman; Andrew Meuser; Sara Botto; Patricia P. Smith; Fenyong Liu; Michael A. Jarvis; Jay A. Nelson; Patrizia Caposio
ABSTRACT Persistent human cytomegalovirus (HCMV) infection has been linked to several diseases, including atherosclerosis, transplant vascular sclerosis (TVS), restenosis, and glioblastoma. We have previously shown that factors secreted from HCMV-infected cells induce angiogenesis and that this process is due, at least in part, to increased secretion of interleukin-6 (IL-6). In order to identify the HCMV gene(s) responsible for angiogenesis promotion, we constructed a large panel of replication-competent HCMV recombinants. One HCMV recombinant deleted for UL1 to UL10 was unable to induce secretion of factors necessary for angiogenesis. Fine mapping using additional HCMV recombinants identified UL7 as a viral gene required for production of angiogenic factors from HCMV-infected cells. Transient expression of pUL7 induced phosphorylation of STAT3 and ERK1/2 MAP kinases and production of proangiogenic factors, including IL-6. Addition of recombinant pUL7 to cells was sufficient for angiogenesis and was again associated with increased IL-6 expression. Analysis of the UL7 structure revealed a conserved domain similar to the immunoglobulin superfamily domain and related to the N-terminal V-like domain of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1). Our report therefore identifies UL7 as a novel HCMV-encoded molecule that is both structurally and functionally related to cellular CEACAM1, a proangiogenic factor highly expressed during vasculogenesis. IMPORTANCE A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection. A hallmark of cytomegalovirus (CMV) infection is its ability to modulate the host cellular machinery, resulting in the secretion of factors associated with long-term diseases such as vascular disorders and cancer. We previously demonstrated that HCMV infection alters the types and quantities of bioactive proteins released from cells (designated the HCMV secretome) that are involved in the promotion of angiogenesis and wound healing. A key proangiogenic and antiapoptotic factor identified from a proteomic-based approach was IL-6. In the present report, we show for the first time that HCMV UL7 encodes a soluble molecule that is a structural and functional homologue of the CEACAM1 proangiogenic cellular factor. This report thereby identifies a critical component of the HCMV secretome that may be responsible, at least in part, for the vascular dysregulation associated with persistent HCMV infection.
Current Opinion in Virology | 2015
Lindsey Crawford; Daniel N. Streblow; Morgan Hakki; Jay A. Nelson; Patrizia Caposio
The generation of humanized mouse models in which immune deficient mice are engrafted with human tissues allows for the direct in vivo investigation of human-restricted viruses. These humanized mouse models have been developed and improved over the past 30 years. It is now possible to achieve high levels of human cell engraftment producing human myeloid and lymphoid lineage cells. Humanized mouse models have been increasingly utilized in the study of human cytomegalovirus (HCMV), a human-specific beta-herpesvirus that infects myeloprogenitor cells and establishes a life-long latency in the infected host. This review focuses on the strengths and limitations of the current humanized mouse models used to study HCMV replication, pathogenesis and treatment.
Scientific Reports | 2017
Lindsey Crawford; Rebecca Tempel; Daniel N. Streblow; Craig N. Kreklywich; Patricia P. Smith; Louis J. Picker; Jay A. Nelson; Patrizia Caposio
The strict species specificity of Human Cytomegalovirus (HCMV) has impeded our understanding of antiviral adaptive immune responses in the context of a human immune system. We have previously shown that HCMV infection of human hematopoietic progenitor cells engrafted in immune deficient mice (huNSG) results in viral latency that can be reactivated following G-CSF treatment. In this study, we characterized the functional human adaptive immune responses in HCMV latently-infected huBLT (humanized Bone marrow-Liver-Thymus) mice. Following infection, huBLT mice generate human effector and central memory CD4+ and CD8+ T-cell responses reactive to peptides corresponding to both IE and pp65 proteins. Additionally, both HCMV specific IgM and IgG B-cell responses with the ability to neutralize virus were detected. These results indicate that the HCMV huBLT mouse model may provide a valuable tool to study viral latency and reactivation as well as evaluate HCMV vaccines and immune responses in the context of a functional human immune system.