Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Colapietro is active.

Publication


Featured researches published by Patrizia Colapietro.


Epigenetics | 2010

Epigenetic modulation of the IGF2/H19 imprinted domain in human embryonic and extra-embryonic compartments and its possible role in fetal growth restriction

Silvia Tabano; Patrizia Colapietro; Irene Cetin; Francesca Romana Grati; Susanna Zanutto; Chiara Mandò; Patrizio Antonazzo; Paola Pileri; F. Rossella; Lidia Larizza; Silvia Maria Sirchia; Monica Miozzo

Genomic imprinting, resulting in parent-of-origin-dependent gene expression, is mainly achieved by DNA methylation. IGF2 and H19, belonging to the same cluster of imprinted genes and regulated by ICR1, DMR2 and H19 promoter elements, play a major role in fetal/placental growth. Using quantitative approaches, we explored the epigenetic modulation of IGF2/H19 during human development in 60 normal and 66 idiopathic IUGR (Intrauterine Growth Restriction) pregnancies, studying embryonic (cord blood) and extraembryonic (placenta and umbilical cord) tissues. We found ICR1 normal methylation levels (~50%) and H19 promoter/DMR2 hypomethylation in extra-embryonic tissues. In contrast, in embryonic samples the three loci displayed normal methylation values comparable to those in postnatal blood. This feature is stably maintained throughout gestation and does not vary in IUGR cases. We reported asymmetric allelic expression of H19 and IGF2 as a common feature in pre- and post-natal tissues, independent of H19 promoter and DMR2 methylation levels. In addition, we excluded in IUGR posttranscriptional IGF2 interference possibly related to miRNA 483-3p (IGF2, intron 2) expression defects. Through LINE1 methylation analysis, we observed a methylation gradient with increasing methylation from pre- to post-natal life. The involvement of UPD (Uniparental Disomy) in IUGR aetiology was excluded. Our data indicate that: i) ICR1 3 methylation status is a necessary and sufficient condition to drive the imprinting of IGF2 and H19 present in embryonic as well as in extra-embryonic tissues; ii) hypomethylation of H19 promoter and DMR2 does not influence the expression pattern of IGF2 and H19; iii) there is a gradient of global methylation, increasing from extra-embryonic to embryonic and adult tissues. Finally, because of placental hypomethylation, cautions should be exercised in diagnosis of imprinting diseases using chorionic villi.


Clinical Genetics | 2015

Clinical and molecular characterization of Rubinstein-Taybi syndrome patients carrying distinct novel mutations of the EP300 gene.

Gloria Negri; Donatella Milani; Patrizia Colapietro; F. Forzano; M. Della Monica; Daniela Rusconi; L. Consonni; L. G. Caffi; Palma Finelli; Gioacchino Scarano; C. Magnani; Angelo Selicorni; Silvia Spena; Lidia Larizza; Cristina Gervasini

Rubinstein‐Taybi syndrome (RSTS) is a rare congenital neurodevelopmental disorder characterized by postnatal growth deficiency, skeletal abnormalities, dysmorphic features and cognitive deficit. Mutations in two genes, CREBBP and EP300, encoding two homologous transcriptional co‐activators, have been identified in ˜55% and ˜3–5% of affected individuals, respectively. To date, only eight EP300‐mutated RSTS patients have been described and 12 additional mutations are reported in the database LOVD. In this study, EP300 analysis was performed on 33 CREBBP‐negative RSTS patients leading to the identification of six unreported germline EP300 alterations comprising one deletion and five point mutations. All six patients showed a convincing, albeit mild, RSTS phenotype with minor skeletal anomalies, slight cognitive impairment and few major malformations. Beyond the expansion of the RSTS‐EP300‐mutated cohort, this study indicates that EP300‐related RSTS cases occur more frequently than previously thought (˜8% vs 3–5%); furthermore, the characterization of novel EP300 mutations in RSTS patients will enhance the clinical practice and genotype–phenotype correlations.


Blood Cancer Journal | 2012

The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma.

Domenica Ronchetti; K Todoerti; Giacomo Tuana; Luca Agnelli; Laura Mosca; Marta Lionetti; Sonia Fabris; Patrizia Colapietro; Monica Miozzo; Manlio Ferrarini; Pierfrancesco Tassone; Antonino Neri

Small nucleolar RNAs (snoRNAs) and small Cajal body-specific RNAs (scaRNAs) are non-coding RNAs involved in the maturation of other RNA molecules and generally located in the introns of host genes. It is now emerging that altered sno/scaRNAs expression may have a pathological role in cancer. This study elucidates the patterns of sno/scaRNAs expression in multiple myeloma (MM) by profiling purified malignant plasma cells from 55 MMs, 8 secondary plasma cell leukemias (sPCLs) and 4 normal controls. Overall, a global sno/scaRNAs downregulation was found in MMs and, even more, in sPCLs compared with normal plasma cells. Whereas SCARNA22 resulted the only sno/scaRNA characterizing the translocation/cyclin D4 (TC4) MM, TC2 group displayed a distinct sno/scaRNA signature overexpressing members of SNORD115 and SNORD116 families located in a region finely regulated by an imprinting center at 15q11, which, however, resulted overall hypomethylated in MMs independently of the SNORD115 and SNORD116 expression levels. Finally, integrative analyses with available gene expression and genome-wide data revealed the occurrence of significant sno/scaRNAs/host genes co-expression and the putative influence of allelic imbalances on specific snoRNAs expression. Our data extend the current view of sno/scaRNAs deregulation in cancer and add novel information to the bio-molecular complexity of plasma cell dyscrasias.


Epigenetics | 2013

Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome

Mariarosaria Calvello; Silvia Tabano; Patrizia Colapietro; Silvia Maitz; Alessandra Pansa; Claudia Augello; Faustina Lalatta; Barbara Gentilin; Filippo Spreafico; Luciano Calzari; Daniela Perotti; Lidia Larizza; Silvia Russo; Angelo Selicorni; Silvia M Sirchia; Monica Miozzo

Beckwith-Wiedemann syndrome (BWS) is a rare disorder characterized by overgrowth and predisposition to embryonal tumors. BWS is caused by various epigenetic and/or genetic alterations that dysregulate the imprinted genes on chromosome region 11p15.5. Molecular analysis is required to reinforce the clinical diagnosis of BWS and to identify BWS patients with cancer susceptibility. This is particularly crucial prenatally because most signs of BWS cannot be recognized in utero. We established a reliable molecular assay by pyrosequencing to quantitatively evaluate the methylation profiles of ICR1 and ICR2. We explored epigenotype-phenotype correlations in 19 patients that fulfilled the clinical diagnostic criteria for BWS, 22 patients with suspected BWS, and three fetuses with omphalocele. Abnormal methylation was observed in one prenatal case and 19 postnatal cases, including seven suspected BWS. Seven cases showed ICR1 hypermethylation, five cases showed ICR2 hypomethylation, and eight cases showed abnormal methylation of ICR1 and ICR2 indicating paternal uniparental disomy (UPD). More cases of ICR1 alterations and UPD were found than expected. This is likely due to the sensitivity of this approach, which can detect slight deviations in methylation from normal levels. There was a significant correlation (p < 0.001) between the percentage of ICR1 methylation and BWS features: severe hypermethylation (range: 75–86%) was associated with macroglossia, macrosomia, and visceromegaly, whereas mild hypermethylation (range: 55–59%) was associated with umbilical hernia and diastasis recti. Evaluation of ICR1 and ICR2 methylation by pyrosequencing in BWS can improve epigenotype-phenotype correlations, detection of methylation alterations in suspected cases, and identification of UPD.


Clinical Genetics | 2015

Insights into genotype-phenotype correlations from CREBBP point mutation screening in a cohort of 46 Rubinstein-Taybi syndrome patients

Silvia Spena; Donatella Milani; Daniela Rusconi; Gloria Negri; Patrizia Colapietro; N. Elcioglu; F. Bedeschi; A. Pilotta; L. Spaccini; A. Ficcadenti; C. Magnani; Gioacchino Scarano; Angelo Selicorni; Lidia Larizza; Cristina Gervasini

The genetic basis of Rubinstein–Taybi syndrome (RSTS), a rare, sporadic, clinically heterogeneous disorder characterized by cognitive impairment and a wide spectrum of multiple congenital anomalies, is primarily due to private mutations in CREBBP (approximately 55% of cases) or EP300 (approximately 8% of cases). Herein, we report the clinical and the genetic data taken from a cohort of 46 RSTS patients, all carriers of CREBBP point mutations. Molecular analysis revealed 45 different gene alterations including 31 inactivating (21 frameshift and 10 nonsense), 10 missense and 4 splicing mutations. Bioinformatic tools and transcript analyses were used to predict the functional effects of missense and splicing alterations. Of the 45 mutations, 42 are unreported and 3 were described previously. Recurrent mutations maybe a key tool in addressing genotype–phenotype correlations in patients sharing the same defects (at the genomic or transcript level) and specific clinical signs, demonstrated here in two cases. The clinical data of our cohort evidenced frequent signs such as arched eyebrows, epicanthus, synophrys and/or frontal hypertrichosis and broad phalanges that, previously overlooked in RSTS diagnosis, now could be considered. Some suggested correlations between organ‐specific anomalies and affected CREB‐binding protein domains broaden the RSTS clinical spectrum and perhaps will enhance patient follow‐up and clinical care.


Pediatric Research | 2013

SNAT2 expression and regulation in human growth-restricted placentas

Chiara Mandò; Silvia Tabano; Paola Pileri; Patrizia Colapietro; Maria A. Marino; Laura Avagliano; Patrizia Doi; Gaetano Bulfamante; Monica Miozzo; Irene Cetin

Background:Amino acid placental delivery is reduced in human intrauterine growth–restricted (IUGR) fetuses, and the activity of placental amino transporters has been consistently shown to be decreased in in vitro studies. We hypothesized lower placental expression and localization of sodium-coupled neutral amino acid transporter 2 (SNAT2 (also known as SLC38A2)), altered levels of intron-1 methylation, and altered distribution of single-nucleotide polymorphisms in human IUGR vs. normal pregnancies.Methods:We studied 88 IUGR and 84 control placentas from singleton pregnancies at elective caesarean section. SNAT2 expression was investigated by real-time PCR and immunohistochemistry. Intron-1 methylation levels were analyzed by pyrosequencing, and single-nucleotide polymorphism distribution was analyzed by allelic discrimination.Results:mRNA levels were significantly decreased in IUGR placentas with reduced umbilical blood flows. Syncytiotrophoblast immunostaining was lower in IUGR placentas than in control placentas. Methylation levels were steadily low in both IUGR and control placentas. SNP genotype and allele frequencies did not differ between the two groups.Conclusion:This is the first study investigating SNAT2 expression and regulation mechanisms in human IUGR placentas. We confirm previous results obtained in rats and cell cultures that support the fundamental role of SNAT2 in fetal growth and well-being, as well as a possible role of oxygen levels in regulating SNAT2 expression, indicating the relevance of hypoxia in IUGR.


Human Mutation | 2016

From Whole Gene Deletion to Point Mutations of EP300‐Positive Rubinstein–Taybi Patients: New Insights into the Mutational Spectrum and Peculiar Clinical Hallmarks

Gloria Negri; Pamela Magini; Donatella Milani; Patrizia Colapietro; Daniela Rusconi; Emanuela Scarano; Maria Teresa Bonati; Manuela Priolo; Milena Crippa; Laura Mazzanti; Anita Wischmeijer; Federica Tamburrino; Tommaso Pippucci; Palma Finelli; Lidia Larizza; Cristina Gervasini

Rubinstein–Taybi syndrome (RSTS) is a rare congenital neurodevelopmental disorder characterized by growth deficiency, skeletal abnormalities, dysmorphic features, and intellectual disability. Causative mutations in CREBBP and EP300 genes have been identified in ∼55% and ∼8% of affected individuals. To date, only 28 EP300 alterations in 29 RSTS clinically described patients have been reported. EP300 analysis of 22 CREBBP‐negative RSTS patients from our cohort led us to identify six novel mutations: a 376‐kb deletion depleting EP300 gene; an exons 17–19 deletion (c.(3141+1_3142‐1)_(3590+1_3591‐1)del/p.(Ile1047Serfs*30)); two stop mutations, (c.3829A>T/p.(Lys1277*) and c.4585C>T/p.(Arg1529*)); a splicing mutation (c.1878‐12A>G/p.(Ala627Glnfs*11)), and a duplication (c.4640dupA/p.(Asn1547Lysfs*3)). All EP300‐mutated individuals show a mild RSTS phenotype and peculiar findings including maternal gestosis, skin manifestation, especially nevi or keloids, back malformations, and a behavior predisposing to anxiety. Furthermore, the patient carrying the complete EP300 deletion does not show a markedly severe clinical picture, even if a more composite phenotype was noticed. By characterizing six novel EP300‐mutated patients, this study provides further insights into the EP300‐specific clinical presentation and expands the mutational repertoire including the first case of a whole gene deletion. These new data will enhance EP300‐mutated cases identification highlighting distinctive features and will improve the clinical practice allowing a better genotype–phenotype correlation.


Orphanet Journal of Rare Diseases | 2012

Preferential expression of mutant ABCD1 allele is common in adrenoleukodystrophy female carriers but unrelated to clinical symptoms.

Ettore Salsano; Silvia Tabano; Silvia Maria Sirchia; Patrizia Colapietro; Barbara Castellotti; Cinzia Gellera; M. Rimoldi; Viviana Pensato; Caterina Mariotti; Davide Pareyson; Monica Miozzo; Graziella Uziel

BackgroundApproximately 20% of adrenoleukodystrophy (X-ALD) female carriers may develop clinical manifestations, typically consisting of progressive spastic gait, sensory deficits and bladder dysfunctions. A skewing in X Chromosome Inactivation (XCI), leading to the preferential expression of the X chromosome carrying the mutant ABCD1 allele, has been proposed as a mechanism influencing X-linked adrenoleukodystrophy (X-ALD) carrier phenotype, but reported data so far are conflicting.MethodsTo shed light into this topic we assessed the XCI pattern in peripheral blood mononuclear cells (PBMCs) of 30 X-ALD carriers. Since a frequent problem with XCI studies is the underestimation of skewing due to an incomplete sample digestion by restriction enzymes, leading to variable results, we developed a pyrosequencing assay to identify samples completely digested, on which to perform the XCI assay. Pyrosequencing was also used to quantify ABCD1 allele-specific expression. Moreover, very long-chain fatty acid (VLCFA) levels were determined in the same patients.ResultsWe found severely (≥90:10) or moderately (≥75:25) skewed XCI in 23 out of 30 (77%) X-ALD carriers and proved that preferential XCI is mainly associated with the preferential expression of the mutant ABCD1 allele, irrespective of the manifestation of symptoms. The expression of mutant ABCD1 allele also correlates with plasma VLCFA concentrations.ConclusionsOur results indicate that preferential XCI leads to the favored expression of the mutant ABCD1 allele. This emerges as a general phenomenon in X-ALD carriers not related to the presence of symptoms. Our data support the postulated growth advantage of cells with the preferential expression of the mutant ABCD1 allele, but argue against the use of XCI pattern, ABCD1 allele-specific expression pattern and VLCFA plasma concentration as biomarkers to predict the development of symptoms in X-ALD carriers.


Leukemia Research | 2010

Differential cytogenomics and miRNA signature of the Acute Myeloid Leukaemia Kasumi-1 cell line CD34+38− compartment

Laura Pedranzini; Federica Mottadelli; Simona Ronzoni; F. Rossella; Manuela Ferracin; Ivana Magnani; Gaia Roversi; Patrizia Colapietro; Massimo Negrini; Pier Giuseppe Pelicci; Lidia Larizza

The t(8;21) Acute Myeloid Leukaemia (AML) Kasumi-1 cell line with N822K KIT mutation, is a model system for leukemogenesis. As AML initiating cells reside in the CD34(+)CD38(-) fraction, we addressed the refined cytogenomic characterization and miRNA expression of Kasumi-1 cell line and its FACS-sorted subpopulations focussing on this compartment. By conventional cytogenetics, Spectral-Karyotyping and array-CGH the cytogenomic profile of Kasumi-1 cells evidenced only subtle regions differentially represented in CD34(+)CD38(-) cells. Expression profiling by a miRNA platform showed a set of miRNA differentially expressed in paired subpopulations and the signature of miR-584 and miR-182 upregulation in the CD34(+)CD38(-) fraction.


Journal of Cellular and Molecular Medicine | 2014

TSC2 epigenetic defect in primary LAM cells. Evidence of an anchorage-independent survival

Elena Lesma; Silvia Ancona; Silvia Maria Sirchia; Emanuela Orpianesi; Vera Grande; Patrizia Colapietro; Eloisa Chiaramonte; Anna Maria Di Giulio; Alfredo Gorio

Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 genes. Lymphangioleiomyomatosis (LAM) can be sporadic or associated with TSC and is characterized by widespread pulmonary proliferation of abnormal α‐smooth muscle (ASM)‐like cells. We investigated the features of ASM cells isolated from chylous thorax of a patient affected by LAM associated with TSC, named LAM/TSC cells, bearing a germline TSC2 mutation and an epigenetic defect causing the absence of tuberin. Proliferation of LAM/TSC cells is epidermal growth factor (EGF)‐dependent and blockade of EGF receptor causes cell death as we previously showed in cells lacking tuberin. LAM/TSC cells spontaneously detach probably for the inactivation of the focal adhesion kinase (FAK)/Akt/mTOR pathway and display the ability to survive independently from adhesion. Non‐adherent LAM/TSC cells show an extremely low proliferation rate consistent with tumour stem‐cell characteristics. Moreover, LAM/TSC cells bear characteristics of stemness and secrete high amount of interleukin (IL)‐6 and IL‐8. Anti‐EGF receptor antibodies and rapamycin affect proliferation and viability of non‐adherent cells. In conclusion, the understanding of LAM/TSC cell features is important in the assessment of cell invasiveness in LAM and TSC and should provide a useful model to test therapeutic approaches aimed at controlling their migratory ability.

Collaboration


Dive into the Patrizia Colapietro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monica Miozzo

Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge