Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Ferrari is active.

Publication


Featured researches published by Patrizia Ferrari.


The Journal of Physiology | 2005

Sodium pump α2 subunits control myogenic tone and blood pressure in mice

Jin Zhang; Moo Yeol Lee; Maurizio Cavalli; Ling Chen; Roberto Berra-Romani; C. William Balke; Giuseppe Bianchi; Patrizia Ferrari; John M. Hamlyn; Takahiro Iwamoto; Jerry B. Lingrel; Donald R. Matteson; W. Gil Wier; Mordecai P. Blaustein

A key question in hypertension is: How is long‐term blood pressure controlled? A clue is that chronic salt retention elevates an endogenous ouabain‐like compound (EOLC) and induces salt‐dependent hypertension mediated by Na+/Ca2+ exchange (NCX). The precise mechanism, however, is unresolved. Here we study blood pressure and isolated small arteries of mice with reduced expression of Na+ pump α1 (α1+/−) or α2 (α2+/−) catalytic subunits. Both low‐dose ouabain (1–100 nm; inhibits only α2) and high‐dose ouabain (≥1 μm; inhibits α1) elevate myocyte Ca2+ and constrict arteries from α1+/−, as well as α2+/− and wild‐type mice. Nevertheless, only mice with reduced α2 Na+ pump activity (α2+/−), and not α1 (α1+/−), have elevated blood pressure. Also, isolated, pressurized arteries from α2+/−, but not α1+/−, have increased myogenic tone. Ouabain antagonists (PST 2238 and canrenone) and NCX blockers (SEA0400 and KB‐R7943) normalize myogenic tone in ouabain‐treated arteries. Only the NCX blockers normalize the elevated myogenic tone in α2+/− arteries because this tone is ouabain independent. All four agents are known to lower blood pressure in salt‐dependent and ouabain‐induced hypertension. Thus, chronically reduced α2 activity (α2+/− or chronic ouabain) apparently regulates myogenic tone and long‐term blood pressure whereas reduced α1 activity (α1+/−) plays no persistent role: the in vivo changes in blood pressure reflect the in vitro changes in myogenic tone. Accordingly, in salt‐dependent hypertension, EOLC probably increases vascular resistance and blood pressure by reducing α2 Na+ pump activity and promoting Ca2+ entry via NCX in myocytes.


Science Translational Medicine | 2010

Adducin- and Ouabain-Related Gene Variants Predict the Antihypertensive Activity of Rostafuroxin, Part 2: Clinical Studies

Chiara Lanzani; Lorena Citterio; Nicola Glorioso; Paolo Manunta; Grazia Tripodi; Erika Salvi; Simona Delli Carpini; Mara Ferrandi; Elisabetta Messaggio; Jan A. Staessen; Daniele Cusi; Fabio Macciardi; Giuseppe Argiolas; Giovanni Valentini; Patrizia Ferrari; Giuseppe Bianchi

Five genetic variants that affect Na,K-ATPase interactions predict the blood pressure response to rostafuroxin but not to losartan and hydrochlorothiazide. Help for Hypertension As if changing its mind about how best to detoxify the body, the kidney first secretes a filtrate that contains almost everything in the blood but then recaptures much of it by pumping essential water, salts, and other molecules back in. The Na+, K+-ATPase, or sodium pump, recaptures sodium salts, and because Na+ is the prime determinant of extracellular fluid volume in the body, regulation of this pump controls blood pressure. Now a pair of papers describes how an antihypertension drug can correct abnormal sodium pumping and how this understanding of the drug’s mechanism points to a genetic signature that can predict whether a patient will respond to the drug. One cause of hypertension is a particular variant(s) of the protein adducin, a modulator of protein exposure on the cell surface that stimulates the sodium pump; a second is high concentrations of endogenous ouabain, an activating ligand for the pump. Both factors abnormally enhance the pump function through the triggering of the Src signaling pathway. Rostafuroxin, a derivative of digitoxigenin, acts as an antihypertensive agent by interfering with both of these ways to activate the sodium pump, preventing an increase in renal tubular Na+ transport and the resulting hypertension. In the first of the companion papers (Ferrandi et al.), the authors explore how rostafuroxin accomplishes its pressure-lowering feat. They show that the drug inhibits the Na+, K+ ATPase-Src-EGFR-ERK signaling activated by mutant adducin or ouabain, normalizing renal cell sodium transport, in two different rodent models of hypertension and in human cells. Upon closer examination of rostafurotoxin’s effects on Src-related phosphorylation in vitro, it became clear that the drug disrupts the ability of the variant adducin and the oubain-bound sodium pump to bind and activate Src at its SH2 domain. In the second of the companion papers (Lanzani et al.), the authors apply these results to patients by examining genetic variants that control the mechanisms of hypertension explored in the first paper. Lanzani et al. inspected genetic alterations in genes that encode enzymes that control ouabain synthesis and transport as well as two variants of adducin. They then tested the ability of these genetic variants to predict the response to rostafuroxin in a group of never-before treated patients with hypertension. Individuals who carried certain combinations of these genetic variants responded well to rostofuroxin, displaying a mean drop in the placebo-corrected blood pressure of about 14 mmHg, a clinically meaningful value. The same genetic signature did not predict the blood pressure response to other antihypertensive drugs with different mechanisms of action. The authors suggest that this genetic signature may exist in about a quarter of hypertensive patients. Finally, rostfuroxin may do more than lower blood pressure. Organ damage is known to be a downstream effect of an overactive Src signaling pathway—one of the byproducts of the hypertension mechanisms studied in this pair of papers. Because rostafuroxin interferes with Src signaling, the drug may curb the secondary damage to the heart, kidney, and brain caused by high blood pressure. Thus the kidney’s seemingly schizophrenic filtering actually represents a multilevel, fine-tuned control of the sodium pump as a means of managing blood pressure. Rostafuroxin can selectively correct hypertension in patients whose pumping mechanism is out of kilter, an advance toward personalized treatment of high blood pressure. Twenty years of genetic studies have not contributed to improvement in the clinical management of primary arterial hypertension. Genetic heterogeneity, epistatic-environmental-biological interactions, and the pathophysiological complexity of hypertension have hampered the clinical application of genetic findings. In the companion article, we furnished data from rodents and human cells demonstrating two hypertension-triggering mechanisms—variants of adducin and elevated concentrations of endogenous ouabain (within a particular range)—and their selective inhibition by the drug rostafuroxin. Here, we have investigated the relationship between variants of genes encoding enzymes for ouabain synthesis [LSS (lanosterol synthase) and HSD3B1 (hydroxy-δ-5-steroid dehydrogenase, 3β- and steroid δ-isomerase 1)], ouabain transport {MDR1/ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1]}, and adducin activity [ADD1 (adducin 1) and ADD3], and the responses to antihypertensive medications. We determined the presence of these variants in newly recruited, never-treated patients. The genetic profile defined by these variants predicted the antihypertensive effect of rostafuroxin (a mean placebo-corrected systolic blood pressure fall of 14 millimeters of mercury) but not that of losartan or hydrochlorothiazide. The magnitude of the rostafuroxin antihypertensive effect was twice that of antihypertensive drugs recently tested in phase 2 clinical trials. One-quarter of patients with primary hypertension display these variants of adducin or concentrations of endogenous ouabain and would be expected to respond to therapy with rostafuroxin. Because the mechanisms that are inhibited by rostafuroxin also underlie hypertension-related organ damage, this drug may also reduce the cardiovascular risk in these patients beyond that expected by the reduction in systolic blood pressure alone.


American Journal of Physiology-heart and Circulatory Physiology | 1999

Evidence for an interaction between adducin and Na+-K+-ATPase: relation to genetic hypertension

Mara Ferrandi; Sergio Salardi; Grazia Tripodi; Paolo Barassi; Rodolfo Rivera; Paolo Manunta; Rivka Goldshleger; Patrizia Ferrari; Giuseppe Bianchi; Steven J. D. Karlish

Adducin point mutations are associated with genetic hypertension in Milan hypertensive strain (MHS) rats and in humans. In transfected cells, adducin affects actin cytoskeleton organization and increases the Na+-K+-pump rate. The present study has investigated whether rat and human adducin polymorphisms differently modulate rat renal Na+-K+-ATPase in vitro. We report the following. 1) Both rat and human adducins stimulate Na+-K+-ATPase activity, with apparent affinity in tens of nanomolar concentrations. 2) MHS and Milan normotensive strain (MNS) adducins raise the apparent ATP affinity for Na+-K+-ATPase. 3) The mechanism of action of adducin appears to involve a selective acceleration of the rate of the conformational change E2 (K) → E1 (Na) or E2(K) ⋅ ATP → E1Na ⋅ ATP. 4) Apparent affinities for mutant rat and human adducins are significantly higher than those for wild types. 5) Recombinant human α- and β-adducins stimulate Na+-K+-ATPase activity, as do the COOH-terminal tails, and the mutant proteins display higher affinities than the wild types. 6) The cytoskeletal protein ankyrin, which is known to bind to Na+-K+-ATPase, also stimulates enzyme activity, whereas BSA is without effect; the effects of adducin and ankyrin when acting together are not additive. 7) Pig kidney medulla microsomes appear to contain endogenous adducin; in contrast with purified pig kidney Na+-K+-ATPase, which does not contain adducin, added adducin stimulates the Na+-K+-ATPase activity of microsomes only about one-half as much as that of purified Na+-K+-ATPase. Our findings strongly imply the existence of a direct and specific interaction between adducin and Na+-K+-ATPase in vitro and also suggest the possibility of such an interaction in intact renal membranes.Adducin point mutations are associated with genetic hypertension in Milan hypertensive strain (MHS) rats and in humans. In transfected cells, adducin affects actin cytoskeleton organization and increases the Na(+)-K(+)-pump rate. The present study has investigated whether rat and human adducin polymorphisms differently modulate rat renal Na(+)-K(+)-ATPase in vitro. We report the following. 1) Both rat and human adducins stimulate Na(+)-K(+)-ATPase activity, with apparent affinity in tens of nanomolar concentrations. 2) MHS and Milan normotensive strain (MNS) adducins raise the apparent ATP affinity for Na(+)-K(+)-ATPase. 3) The mechanism of action of adducin appears to involve a selective acceleration of the rate of the conformational change E(2) (K) --> E(1) (Na) or E(2)(K). ATP --> E(1)Na. ATP. 4) Apparent affinities for mutant rat and human adducins are significantly higher than those for wild types. 5) Recombinant human alpha- and beta-adducins stimulate Na(+)-K(+)-ATPase activity, as do the COOH-terminal tails, and the mutant proteins display higher affinities than the wild types. 6) The cytoskeletal protein ankyrin, which is known to bind to Na(+)-K(+)-ATPase, also stimulates enzyme activity, whereas BSA is without effect; the effects of adducin and ankyrin when acting together are not additive. 7) Pig kidney medulla microsomes appear to contain endogenous adducin; in contrast with purified pig kidney Na(+)-K(+)-ATPase, which does not contain adducin, added adducin stimulates the Na(+)-K(+)-ATPase activity of microsomes only about one-half as much as that of purified Na(+)-K(+)-ATPase. Our findings strongly imply the existence of a direct and specific interaction between adducin and Na(+)-K(+)-ATPase in vitro and also suggest the possibility of such an interaction in intact renal membranes.


Biochimica et Biophysica Acta | 1990

Na+/K+/Cl--cotransporter mediated Rb+ fluxes in membrane vesicles from kidneys of normotensive and hypertensive rats

M. Ferrandi; Sergio Salardi; Paolo Parenti; Patrizia Ferrari; Giuseppe Bianchi; R. Braw; Steven J. D. Karlish

This paper describes experiments to examine Rb+ fluxes via the Na+/K+/Cl- cotransporter in membrane vesicles from renal outer medulla of three strains of rat: (A) Wistar (B) Milan hypertensive (MHS) and normotensive (MNS), and (C) Sabra salt-sensitive hypertensive (SBH) and salt-resistant (SBN). Initially, Na(+)-dependent furosemide- or bumetanide-inhibited 86Rb+ fluxes were characterised using Wistar rat microsomes. The latter were partially purified on a metrizamide cushion, and assay conditions were optimized for use with microsomes from the other rats. The major result is that in microsomes from adult Milan hypertensive (MHS) rats the rate of the Na+/K+/Cl(-)-cotransporter mediated 86Rb flux at sub-saturating concentrations of Rb, appears to be significantly greater than in the normotensive (MNS) controls. The effect reflects an increased apparent Rb affinity of the cotransporter in MHS microsomes. There is no difference in maximal rate or in the apparent Na+ activation affinity of the 86Rb+ flux. In addition bumetanide appears to be a somewhat more effective inhibitor in MHS compared to MNS microsomes. The 86Rb+ flux result is compatible with a previous finding that in red cells, Na+/K+ -cotransporter mediated fluxes are increased in MHS compared to MNS. It supports the notion that the Na+/K+/Cl(-)-cotransporter in in both red cells and kidney is a genetic marker for hypertension. It is of interest that apparently more than one Na+ transport system is affected in MHS hypertensive kidneys (a) the Na+/K+/Cl- cotransporter in the thick ascending limb of Henle and (b) the Na+/H+ exchanger and/o a conductive Na(+)-pathway in brush-border membranes from proximal tubule. It is conceivable that in the hypertensive animals a common regulatory pathway (e.g., phosphorylation) or protein (e.g., cytoskeleton) is affected along the length of the nephron. In Sabra SBH and SBN rat microsomes, no difference was found for the 86Rb+ flux via the Na+/K+/Cl- cotransporter (or via a K+ channel).


Critical Care Medicine | 2013

Preoperative endogenous ouabain predicts acute kidney injury in cardiac surgery patients.

Elena Bignami; Nunzia Casamassima; Elena Frati; Chiara Lanzani; Laura Corno; Ottavio Alfieri; Stephen S. Gottlieb; Marco Simonini; Keyur B. Shah; Anna Mizzi; Elisabetta Messaggio; Alberto Zangrillo; Mara Ferrandi; Patrizia Ferrari; Giuseppe Bianchi; John M. Hamlyn; Paolo Manunta

Objectives:Acute kidney injury is a frequent complication of cardiac surgery and increases morbidity and mortality. As preoperative biomarkers predicting the development of acute kidney injury are not available, we have tested the hypothesis that preoperative plasma levels of endogenous ouabain may function as this type of biomarker. Rationale and Design:Endogenous ouabain is an adrenal stress hormone associated with adverse cardiovascular outcomes. Its involvement in acute kidney injury is unknown. With studies in patients and animal settings, including isolated podocytes, we tested the above mentioned hypothesis. Patients:Preoperative endogenous ouabain was measured in 407 patients admitted for elective cardiac surgery and in a validation population of 219 other patients. We also studied the effect of prolonged elevations of circulating exogenous ouabain on renal parameters in rats and the influence of ouabain on podocyte proteins both “in vivo” and “in vitro.” Main Results:In the first group of patients, acute kidney injury (2.8%, 8.3%, 20.3%, p < 0.001) and ICU stay (1.4±0.38, 1.7±0.41, 2.4±0.59 days, p = 0.014) increased with each incremental preoperative endogenous ouabain tertile. In a linear regression analysis, the circulating endogenous ouabain value before surgery was the strongest predictor of acute kidney injury. In the validation cohort, acute kidney injury (0%, 5.9%, 8.2%, p < 0.0001) and ICU stay (1.2±0.09, 1.4±0.23, 2.2±0.77 days, p = 0.003) increased with the preoperative endogenous ouabain tertile. Values for preoperative endogenous ouabain significantly improved (area under curve: 0.85) risk prediction over the clinical score alone as measured by integrate discrimination improvement and net reclassification improvement. Finally, in the rat model, elevated circulating ouabain reduced creatinine clearance (–18%, p < 0.05), increased urinary protein excretion (+ 54%, p < 0.05), and reduced expression of podocyte nephrin (–29%, p < 0.01). This last finding was replicated ex vivo by incubating podocyte primary cell cultures with low-dose ouabain. Conclusions:Preoperative plasma endogenous ouabain levels are powerful biomarkers of acute kidney injury and postoperative complications and may be a direct cause of podocyte damage.


British Journal of Pharmacology | 2013

Istaroxime stimulates SERCA2a and accelerates calcium cycling in heart failure by relieving phospholamban inhibition

Mara Ferrandi; Paolo Barassi; Francesco Tadini-Buoninsegni; Gianluca Bartolommei; Isabella Molinari; Maria Grazia Tripodi; Cristina Reina; Maria Rosa Moncelli; Giuseppe Bianchi; Patrizia Ferrari

Calcium handling is known to be deranged in heart failure. Interventions aimed at improving cell Ca2+ cycling may represent a promising approach to heart failure therapy. Istaroxime is a new luso‐inotropic compound that stimulates cardiac contractility and relaxation in healthy and failing animal models and in patients with acute heart failure (AHF) syndrome. Istaroxime is a Na‐K ATPase inhibitor with the unique property of increasing sarcoplasmic reticulum (SR) SERCA2a activity as shown in heart microsomes from humans and guinea pigs. The present study addressed the molecular mechanism by which istaroxime increases SERCA2a activity.


Pflügers Archiv: European Journal of Physiology | 2011

NKCC2 is activated in Milan hypertensive rats contributing to the maintenance of salt-sensitive hypertension

Monica Carmosino; Federica Rizzo; Patrizia Ferrari; Lucia Torielli; Mara Ferrandi; Giuseppe Bianchi; Maria Svelto; Giovanna Valenti

The Milan hypertensive strain of rats (MHS) develops hypertension as a consequence of the increased tubular Na+ reabsorption sustained by enhanced expression and activity of the renal tubular Na–K–ATPase. To verify whether the Na–K–2Cl cotransporter (NKCC2) is involved in the maintenance of hypertension in MHS rats, we have analysed the phosphorylation state and the activation of NKCC2 in Milan rats. Western blotting and immunofluorescence experiments were performed using specific antibodies against the regulatory phospho-threonines in the NKCC2 N terminus (R5 antibody). The phosphorylation levels of NKCC2 were significantly increased in the kidney of MHS rats. Moreover, the administration of furosemide in vivo decreased the blood pressure and increased the urine output and natriuresis in MHS rats demonstrating the actual involvement of NKCC2 activity in the pathogenesis of hypertension in this strain of rats. The up-regulation of NKCC2 activity is most probably mediated by a STE20/SPS1-related proline/alanine-rich kinase (SPAK) phosphorylation at serine-325 since it was significantly increased in MHS rats. Interestingly, aldosterone treatment caused an increase in NKCC2 phosphorylation in NKCC2-expressing MDCK cells. In conclusion, we demonstrated an increase in the activity of NKCC2 along the TAL that significantly contributes to the increase in systemic blood pressure in MHS rats. The elevated plasma levels of aldosterone, found in MHS rats, may influence Na+ balance through a SPAK-dependent regulation of NKCC2 accounting for the maintenance of the hypertensive state in MHS rats.


Biochimica et Biophysica Acta | 2010

Rostafuroxin: An ouabain-inhibitor counteracting specific forms of hypertension

Patrizia Ferrari

An innovative approach to the therapy of essential hypertension (EH) and the related complications has been pursued by our group with the aim of defining specific genetic-molecular mechanisms underlying the disease in sub-sets of patients. This approach is anticipated to have a major effect on the clinical practice, diagnostics and development of new drugs able to selectively target such mechanisms. The final achievement is the definition of biomarkers for identifying patients who more likely should benefit for a given therapy both in terms of efficacy and reduction of the adverse reactions. Among many, two mechanisms have been defined and addressed:Both alterations lead to hypertension, organ hypertrophy, negative vascular remodeling and increased cardiovascular risk by affecting the renal Na(+) handling, through the up-regulation of the Na(+)-K(+) pump and the activation of the Src-dependent signal transduction pathway. A novel antihypertensive agent, rostafuroxin (PST2238), has been selected and developed for its ability to correct the renal Na(+)-K(+) pump abnormalities sustained by the mutant adducin and EO-dependent mechanisms. It is endowed with high potency and efficacy in reducing blood pressure (BP) and preventing organ hypertrophy in animal models representative of both adducin and EO mechanisms. At molecular level, in the kidney, rostafuroxin normalizes the enhanced activity of the Na(+)-K(+) pump induced by mutant adducin and antagonizes the EO triggering of the Src-EGFr-dependent signaling pathway leading to renal Na(+)-K(+) pump and ERK phosphorylation and activation. In the vasculature, it normalizes the increased myogenic tone caused by ouabain. A very high safety ratio and the absence of interaction with other mechanisms involved in BP regulation, together with evidence of high tolerability and efficacy in hypertensive patients indicate rostafuroxin as the first example of a new class of antihypertensive agents designed to antagonize adducin and EO-hypertensive mechanisms. A recently concluded Phase II clinical trial (OASIS) has provided the proof of concept that such a compound is effective in the subset of patients where these two mechanisms are at work.


Biochimica et Biophysica Acta | 1992

Na+/K+/Cl− cotransport in resealed ghosts from erythrocytes of the Milan hypertensive rats

Patrizia Ferrari; Lucia Torielli; Sergio Salardi; Andrea Rizzo; Giuseppe Bianchi

The erythrocytes (RBC) of the Milan hypertensive rats (MHS) have a smaller volume and faster Na+/K+/Cl- cotransport than RBC from normotensive controls (MNS). The difference in Na+/K+/Cl- cotransport is no longer present in inside-out Vesicles (IOV) of RBC membrane. To differentiate between cytoplasmic or membrane skeleton abnormalities as possible causes of these differences. Resealed ghosts (RG) were used to measure ion transport systems. The following results have been obtained: (1) RG from MHS have a smaller volume than MNS (mean +/- S.E. 20.7 +/- 0.45 vs. 22.09 +/- 0.42 fl, P < 0.05). (2) RG showed a bumetanide-sensitive Na efflux that retains the characteristics of the Na+/K+/Cl- cotransport of the original RBC: it is K(+)- and Cl(-)-sensitive and dependent on the intracellular Na+ concentration. (3) The Na+/K+/Cl- cotransport was faster in RG from MHS than in those from MNS (mean +/- S.E. 0.095 +/- 0.01 vs. 0.066 +/- 0.01 rate constant h-1, P < 0.01). These results, together with those of IOV, support the hypothesis that an abnormality in the membrane skeletal proteins may play a role in the different Na+/K+/Cl- cotransport modulation between MHS and MNS erythrocytes.


Annals of the New York Academy of Sciences | 2003

Antihypertensive Compounds That Modulate the Na-K Pump

Patrizia Ferrari; Mara Ferrandi; Lucia Torielli; Paolo Barassi; Grazia Tripodi; E. Minotti; Isabella Molinari; Piero Melloni; Giuseppe Bianchi

Abstract: A primary impairment of the kidney sodium excretion has been documented both in hypertensive patients (EH) and genetic animal models (Milan hypertensive rat [MHS]) carrying mutations of the cytoskeletal protein adducin and/or increased plasma levels of endogenous ouabain (EO). Ouabain (OU) itself induces hypertension in rats and both OU and mutated adducin activate the renal Na/K‐ATPase function both in vivo and in cultured renal cells (NRK). A new antihypertensive agent, PST 2238, able to selectively interact with these alterations has been developed. PST lowers blood pressure (BP) by normalizing the expression and activity of the renal Na‐K pump selectively in those rat models carrying the adducin mutation (MHS) and/or increased EO levels (OS) at oral doses of 0.1‐10 μg/kg. In NRK cells either transfected with mutated adducin or incubated with 10−9 M OU, PST normalizes the Na‐K pump activity. Recently, an association between EO and cardiac complications has been observed in both EH and rat models consistent with a prohypertrophic activity of OU. OS rats showed a 10% increase of left ventricle and kidney weights as compared with controls, and PST 2238 (1 μg/kg OS) prevented both ventricle and renal hypertrophy. This effect was associated with the ability of PST to antagonize the OU‐dependent activation of growth‐related genes, in the membrane subdomains of caveolae. In conclusion, PST is a new antihypertensive agent that may prevent cardiovascular complications associated with hypertension through the selective modulation of the Na‐K pump function.

Collaboration


Dive into the Patrizia Ferrari's collaboration.

Top Co-Authors

Avatar

Giuseppe Bianchi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge