Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Ferretti is active.

Publication


Featured researches published by Patrizia Ferretti.


Nature Reviews Neuroscience | 2009

Considering the evolution of regeneration in the central nervous system

Elly M. Tanaka; Patrizia Ferretti

For many years the mammalian CNS has been seen as an organ that is unable to regenerate. However, it was also long known that lower vertebrate species are capable of impressive regeneration of CNS structures. How did this situation arise through evolution? Increasing cellular and molecular understanding of regeneration in different animal species coupled with studies of adult neurogenesis in mammals is providing a basis for addressing this question. Here we compare CNS regeneration among vertebrates and speculate on how this ability may have emerged or been restricted.


Developmental Dynamics | 2003

Changes in spinal cord regenerative ability through phylogenesis and development: Lessons to be learnt

Patrizia Ferretti; Fang Zhang; Paul M. O'Neill

Lower vertebrates, such as fish and amphibians, and developing higher vertebrates can regenerate complex body structures, including significant portions of their central nervous system. It is still poorly understood why this potential is lost with evolution and development and becomes very limited in adult mammals. In this review, we will discuss the current knowledge on the cellular and molecular changes after spinal cord injury in adult tailed amphibians, where regeneration does take place, and in developing chick and mammalian embryos at different developmental stages. We will focus on the recruitment of progenitor cells to repair the damage and discuss possible roles of changes in early response to injury, such as cell death by apoptosis, and of myelin‐associated proteins, such as Nogo, in the transition between regeneration‐competent and regeneration‐incompetent stages of development. A better understanding of the mechanisms underlying spontaneous regeneration of the spinal cord in vivo in amphibians and in the chick embryo will help to devise strategies for restoring function to damaged or diseased nervous tissues in mammals. Developmental Dynamics 226:245–256, 2003.© 2003 Wiley‐Liss, Inc.


Developmental Cell | 2010

ASPP2 Binds Par-3 and Controls the Polarity and Proliferation of Neural Progenitors during CNS Development

Roberta Sottocornola; Christophe Royer; Virginie Vives; Luca Tordella; Shan Zhong; Yihua Wang; Indrika Ratnayaka; Mark Shipman; Amanda Cheung; Carles Gaston-Massuet; Patrizia Ferretti; Zoltán Molnár; Xin Lu

Cell polarity plays a key role in the development of the central nervous system (CNS). Interestingly, disruption of cell polarity is seen in many cancers. ASPP2 is a haplo-insufficient tumor suppressor and an activator of the p53 family. In this study, we show that ASPP2 controls the polarity and proliferation of neural progenitors in vivo, leading to the formation of neuroblastic rosettes that resemble primitive neuroepithelial tumors. Consistent with its role in cell polarity, ASPP2 influences interkinetic nuclear migration and lamination during CNS development. Mechanistically, ASPP2 maintains the integrity of tight/adherens junctions. ASPP2 binds Par-3 and controls its apical/junctional localization without affecting its expression or Par-3/aPKC lambda binding. The junctional localization of ASPP2 and Par-3 is interdependent, suggesting that they are prime targets for each other. These results identify ASPP2 as a regulator of Par-3, which plays a key role in controlling cell proliferation, polarity, and tissue organization during CNS development.


Developmental Biology | 2011

Protein deiminases: new players in the developmentally regulated loss of neural regenerative ability

Sigrun Lange; Stefanie Gögel; Kit-Yi Leung; Bertrand Vernay; Anthony P. Nicholas; Corey P. Causey; Paul R. Thompson; Nicholas D. E. Greene; Patrizia Ferretti

Spinal cord regenerative ability is lost with development, but the mechanisms underlying this loss are still poorly understood. In chick embryos, effective regeneration does not occur after E13, when spinal cord injury induces extensive apoptotic response and tissue damage. As initial experiments showed that treatment with a calcium chelator after spinal cord injury reduced apoptosis and cavitation, we hypothesized that developmentally regulated mediators of calcium-dependent processes in secondary injury response may contribute to loss of regenerative ability. To this purpose we screened for such changes in chick spinal cords at stages of development permissive (E11) and non-permissive (E15) for regeneration. Among the developmentally regulated calcium-dependent proteins identified was PAD3, a member of the peptidylarginine deiminase (PAD) enzyme family that converts protein arginine residues to citrulline, a process known as deimination or citrullination. This post-translational modification has not been previously associated with response to injury. Following injury, PAD3 up-regulation was greater in spinal cords injured at E15 than at E11. Consistent with these differences in gene expression, deimination was more extensive at the non-regenerating stage, E15, both in the gray and white matter. As deimination paralleled the extent of apoptosis, we investigated the effect of blocking PAD activity on cell death and deiminated-histone 3, one of the PAD targets we identified by mass-spectrometry analysis of spinal cord deiminated proteins. Treatment with the PAD inhibitor, Cl-amidine, reduced the abundance of deiminated-histone 3, consistent with inhibition of PAD activity, and significantly reduced apoptosis and tissue loss following injury at E15. Altogether, our findings identify PADs and deimination as developmentally regulated modulators of secondary injury response, and suggest that PADs might be valuable therapeutic targets for spinal cord injury.


Development Genes and Evolution | 2003

Up-regulation of neural stem cell markers suggests the occurrence of dedifferentiation in regenerating spinal cord.

Sally Walder; Fang Zhang; Patrizia Ferretti

Following tail amputation in urodele amphibians, an ependymal tube, that resembles a developing neural tube, forms from ependymal cells that migrate from the cord stump and elongates by cell proliferation. Expression of the keratin pair 8 and 18 has been observed in the developing urodele nervous system and is maintained in the ependymal cells of the mature cord. We show here that expression of these keratins is not unique to urodeles, but is also observed in the radial glia of the human spinal cord, suggesting that these proteins might play a role both in neural development and regeneration. Analysis of their expression in the regenerating spinal cord following tail amputation shows that their expression, as well as that of glial fibrillary acidic protein (GFAP), is maintained in the ependymal tube during regeneration, though differences in their levels of expression are observed along the anteroposterior axis and appear to be related to the progression of morphogenesis. In addition, we show that following tail amputation the ependymal tube expresses the neural stem cell markers nestin and vimentin, which are undetectable in normal urodele spinal cord. This up-regulation of neural stem cell markers shows that the ependymal cells undergo a phenotypic change. Whereas maintenance of keratin and GFAP expression in the adult ependyma may reflect a higher plasticity of these cells in adult urodeles than in other vertebrates, re-expression of markers of early neural development suggests the occurrence of a dedifferentiation process in the spinal cord in response to injury.


International Review of Cytology-a Survey of Cell Biology | 1998

Gene Expression during Amphibian Limb Regeneration

Jacqueline Géraudie; Patrizia Ferretti

Limb regeneration in adult urodeles is an important phenomenon that poses fundamental questions both in biology and in medicine. In this review, we focus on recent advances in the characterization of the regeneration blastema at cellular and molecular levels and on the current understanding of the molecular basis of limb regeneration and its relationship to development. In particular, we discuss (i) the spatiotemporal distribution of genes and gene products in the mesenchyme and wound epidermis of the regenerating limb, (ii) how growth is controlled in the regeneration blastema, and (iii) molecules that are likely to be involved in patterning the regenerating limb such as homeobox genes and retinoids.


Developmental Dynamics | 2004

Nogo and Nogo-66 Receptor in Human and Chick: Implications for Development and Regeneration

Paul M. O'Neill; Katherine Whalley; Patrizia Ferretti

Antibodies to the myelin protein Nogo increase axonal regrowth after central nervous system injury. We have investigated whether Nogo expression contributes to loss of regenerative potential during development by using chick embryos, which regenerate their spinal cord until embryonic day (E) 13, when myelination begins. We show that Nogo‐A and the Nogo receptor (NgR) are developmentally regulated both in chick and human embryos, are first detected at developmental stages when the chick spinal cord regenerates, and are not down‐regulated after injury at permissive stages for regeneration. Therefore, expression of Nogo‐A and NgR in pre‐E13 chick spinal cords is not sufficient to inhibit regeneration. Nogo‐A expression in the chick early embryo is primarily observed in axons, whereas NgR is mainly located on neuronal cell bodies, both in spinal cord and eye, and in striated muscle including the heart. With the onset of myelination, there is down‐regulation of Nogo‐A expression in neurons. Therefore, loss of regenerative potential might be linked to changes in its cellular localization. The possibility that only Nogo expressed in mature oligodendrocytes can exercise inhibitory effects would reconcile the lack of inhibition we observe in developing chick spinal cords before the onset of myelination with evidence from other laboratories on the inhibitory effects of Nogo in mature central nervous system. The distinctive and complementary patterns of Nogo‐A and NgR expression and their conservation throughout evolution support the view that Nogo signaling represents a key pathway in nervous system and striated muscle development. Its putative role in target innervation and establishment of neural circuitry is discussed. Developmental Dynamics 231:109–121, 2004.


NeuroImage | 2009

In vivo magnetic resonance imaging of endogenous neuroblasts labelled with a ferumoxide-polycation complex

Rachael A Panizzo; Panagiotis G. Kyrtatos; Anthony N. Price; David G. Gadian; Patrizia Ferretti; Mark F. Lythgoe

Neurogenesis occurs at the subependymal zone (SEZ) of the adult brain. Neural progenitor cells give rise to neuroblasts, which migrate to the olfactory bulb (OB) via the rostral migratory stream (RMS). Development of methods capable of labelling and tracking these cells in vivo would be of great benefit to the understanding of neuroblast migration away from the SEZ under normal and pathological conditions. In this study, we demonstrate that endogenous neuroblasts can be labelled in vivo with an MRI contrast agent and that they can be visualised using MRI. We compared two labelling strategies: intraventricular injection of the ferumoxide Endorem, with or without the transfection agent protamine sulphate. Administration of Endorem alone resulted in its distribution outside of the ventricle and into the periventricular space after 48 h. In contrast, we observed that intraventricular injection of Endorem complexed to protamine sulphate--forming the FePro complex--is restricted to the ventricular walls after 48 h. The FePro complex successfully labelled Doublecortin(+) neuroblasts in vivo up to 28 days post-injection. FePro-labelled neuroblasts in the RMS could be visualised using MRI in vivo and ex vivo on a 2.35 T MRI system, and FePro-labelled cells were identified in the OB on a 9.4 T MRI system. This study demonstrates the feasibility of in vivo imaging of endogenous neuroblast migration using MRI.


Developmental Dynamics | 1997

Keratin 8 and 18 expression in mesenchymal progenitor cells of regenerating limbs is associated with cell proliferation and differentiation

Jonathan P. Corcoran; Patrizia Ferretti

Keratins are considered markers of epithelial differentiation. In lower vertebrates, however, immunoreactivity for keratin 8 and 18 has been reported in nonepithelial cells, particularly in mesenchymal progenitor cells of regenerating complex body structures. To confirm that such reactivity does indeed reflect keratin expression and to investigate their possible role in regeneration, we have isolated clones coding for the newt homologues of keratin 8 and 18 (NvK8 and NvK18, respectively) and studied their distribution and changes in their expression following experimental manipulations. Analysis of NvK8 and NvK18 transcripts confirms that K8 and K18 are expressed in the blastemal cells of regenerating newt limbs and that their expression is first observed 3‐5 days after amputation, when the blastemal cells start to proliferate under the influence of the nerve, whose presence is essential for regeneration to proceed. In contrast, no induction of these keratins is observed following amputation of a larval limb at a stage when organogenesis is proceeding in a nerve‐independent manner. To establish whether there is a causal relationship between keratin expression and cell proliferation in the adult limb blastema, we have investigated whether their expression is nerve‐dependent and whether suppression of their expression in cultured blastemal cells affects cell division and differentiation. Analysis of keratins in denervated limbs demonstrates that the nerve is not necessary to induce their expression. However, treatment of cultured blastemal cells with K8 and K18 anti‐sense oligonucleotides significantly decreases DNA synthesis and induces changes in cell morphology, suggesting that expression of these keratins during regeneration may be necessary for the maintenance of the undifferentiated and proliferative state of blastemal cells. Dev. Dyn. 1997;210:355–370.


Neuroscience | 2006

Changes in response to spinal cord injury with development: Vascularization, hemorrhage and apoptosis

K Whalley; P O'Neill; Patrizia Ferretti

Chick embryos are capable of functional spinal cord regeneration following crush injury until embryonic day 13. Developmental changes occurring thereafter result in failure to regenerate. Secondary injury mechanisms can result in apoptotic cell death and make a major contribution to cell loss after trauma. We report here that around embryonic day 13 there is a dramatic increase in blood vessel numbers in the spinal cord, and that the extent of hemorrhage in response to injury increases with developmental age. This is paralleled by increased apoptosis and subsequent cavitation in spinal cords injured at embryonic day 15 as compared with embryonic day 11. Following spinal cord injury at embryonic day 15, apoptotic cell death is extensive and spreads to the same extent as the hemorrhage. When hemorrhage is reduced by treatment with the hemostatic drug desmopressin the extent of apoptosis and cavity formation in spinal cords injured at embryonic day 15 decreases. Furthermore, manipulations of embryonic day 11 spinal cords that increase hemorrhage also increase apoptosis and result in cavitation in contrast to the effective repair typical of this stage. Altogether these results suggest that cavity formation occurring at developmental stages non-permissive for regeneration is largely due to changes in the extent of apoptosis that are related to vascularization and hemorrhage.

Collaboration


Dive into the Patrizia Ferretti's collaboration.

Top Co-Authors

Avatar

Andrew J. Copp

University College London

View shared research outputs
Top Co-Authors

Avatar

Sigrun Lange

University College London

View shared research outputs
Top Co-Authors

Avatar

Amel Ibrahim

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Thorogood

University of Southampton

View shared research outputs
Top Co-Authors

Avatar

Barbora Vagaska

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo Guasti

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

Mark F. Lythgoe

University College London

View shared research outputs
Top Co-Authors

Avatar

Nicholas D. E. Greene

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge