Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Paradiso is active.

Publication


Featured researches published by Patrizia Paradiso.


Journal of Biomedical Materials Research Part B | 2014

Comparison of two hydrogel formulations for drug release in ophthalmic lenses.

Patrizia Paradiso; Raquel Galante; Luís F. Santos; A.P. Alves de Matos; R. Colaço; Ana Paula Serro; Benilde Saramago

In the present work two types of polymers were investigated as drug releasing contact lens materials: a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel and a silicone hydrogel. The silicone hydrogel resulted from the addition of TRIS, a hydrophobic monomer containing silicon (3-tris(trimethylsilyloxy)silylpropyl 2-methylprop-2-enoate), to pHEMA. Both hydrogels were loaded with an antibiotic (levofloxacin) and an antiseptic (chlorhexidine) by soaking in the drug solutions. The hydrogel properties were determined to be within the range demanded for lens materials. The release profiles of both drugs from the hydrogels were obtained and eventual drug/polymer interactions were assessed with the help of Raman spectra. A mathematical model, developed to mimic the eye conditions, was applied to the experimental results in order to predict the in vivo efficacy of the studied systems. The release profiles were compared with those resulting from the application of commercial eyedrops. The pHEMA based hydrogel demonstrated to be the best material to achieve a controlled release of levofloxacin. In the case of chlorhexidine, the silicone hydrogel seems to lead to better results. In both cases, our results suggest that these materials are adequate for the preparation of daily disposable therapeutic contact lenses.


Colloids and Surfaces B: Biointerfaces | 2012

Interaction of local and general anaesthetics with liposomal membrane models: A QCM-D and DSC study

José Gabriel Paiva; Patrizia Paradiso; Ana Paula Serro; Anabela C. Fernandes; Benilde Saramago

The behaviour of four local anaesthetics (lidocaine, levobupivacaine, ropivacaine and tetracaine) and one general anaesthetic (propofol) is compared when interacting with two types of model membranes: supported layers of liposomes and liposomes in solution. Several liposomal compositions were tested: dimyristoylphosphatidylcholine (DMPC), binary mixtures of DMPC with cholesterol (CHOL), and ternary mixtures of dipalmitoylphosphatidylcholine (DPPC), DMPC, and CHOL. A quartz crystal microbalance with dissipation, QCM-D, was used to assess changes in the properties of supported layers of liposomes. The effect of the anaesthetics on the phase behaviour of the liposomes in suspension was determined by differential scanning calorimetry. Both techniques show that all anaesthetics have a fluidizing effect on the model membranes but, apparently, the solid supported liposomes are less affected by the anaesthetics than the liposomes in solution. Although the different anaesthetics were compared at different concentrations, tetracaine and propofol seem to induce the strongest perturbation on the liposome membrane. The resistance of the liposomes to the anaesthetic action was found to increase with the presence of cholesterol, while adding DPPC to the binary mixture DMPC+CHOL does not change its behaviour. The novelty of the present work resides upon three points: (1) the use of supported layers of liposomes as model membranes to study interactions with anaesthetics; (2) application of QCM-D to assess changes of the adsorbed liposomes; (3) a comparison of the effect of local and general anaesthetics interacting with various model membranes in similar experimental conditions.


Colloids and Surfaces B: Biointerfaces | 2014

Effect of tetracaine on DMPC and DMPC + cholesterol biomembrane models: Liposomes and monolayers

Ana Paula Serro; Raquel Galante; A. Kozica; Patrizia Paradiso; A. M. Goncalves Da Silva; K.V. Luzyanin; André Campos Fernandes; Benilde Saramago

Different types of lipid bilayers/monolayers have been used to simulate the cellular membranes in the investigation of the interactions between drugs and cells. However, to our knowledge, very few studies focused on the influence of the chosen membrane model upon the obtained results. The main objective of this work is to understand how do the nature and immobilization state of the biomembrane models influence the action of the local anaesthetic tetracaine (TTC) upon the lipid membranes. The interaction of TTC with different biomembrane models of dimyristoylphosphatidylcholine (DMPC) with and without cholesterol (CHOL) was investigated through several techniques. A quartz crystal microbalance with dissipation (QCM-D) was used to study the effect on immobilized liposomes, while phosphorus nuclear magnetic resonance ((31)P-NMR) and differential scanning calorimetry (DSC) were applied to liposomes in suspension. The effect of TTC on Langmuir monolayers of lipids was also investigated through surface pressure-area measurements at the air-water interface. The general conclusion was that TTC has a fluidizing effect on the lipid membranes and, above certain concentrations, induces membrane swelling or even solubilization. However, different models led to variable responses to the TTC action. The intensity of the disordering effect caused by TTC increased in the following order: supported liposomes<liposomes in solution<Langmuir monolayers. This means that extrapolation of the results obtained in in vitro studies of the lipid/anaesthetic interactions to in vivo conditions should be done carefully.


Journal of Biomaterials Science-polymer Edition | 2015

About the effect of eye blinking on drug release from pHEMA-based hydrogels: an in vitro study

Raquel Galante; Patrizia Paradiso; Maria Guilhermina Moutinho; Ana Isabel Fernandes; José Mata; A.P. Alves de Matos; R. Colaço; Benilde Saramago; Ana Paula Serro

The development of new ophthalmic drug delivery systems capable of increasing the residence time of drugs in the eye and improve its bioavailability relatively to eyedrops has been object of intense research in recent years. Several studies have shown that drug-loaded therapeutic soft contact lenses (SCLs) constitute a promising approach, with several potential advantages as compared with collyria. The main objective of this work is to study the effect of repetitive load and friction cycles caused by the eye blinking, on the drug release from hydrogels used in SCLs which, as far as we know, was never investigated before. Two poly-2-hydroxyethylmethacrylate-based hydrogels, pHEMA-T and pHEMA-UV, were used as model materials. Levofloxaxin was chosen as model drug. The hydrogels were fully characterized in what concerns structural and physicochemical properties. pHEMA-UV revealed some superficial porosity and a lower short-range order than pHEMA-T. We observe that the load and friction cycles enhanced the drug release from pHEMA-UV hydrogels. The application of a simple mathematical model, which takes into account the drug dilution caused by the tear flow, showed that the enhancement of the drug release caused by blinking on this hydrogel may be relevant in in vivo conditions. Conversely, the more sustained drug release from pHEMA-T is not affected by load and friction cycles. The conclusion is that, depending on the physicochemical and microstructural characteristics of the hydrogels, blinking is a factor that may affect the amount of drug delivered to the eye by SCLs and should thus be considered.


Journal of Pharmaceutical Sciences | 2016

Controlled Release of Antibiotics From Vitamin E–Loaded Silicone-Hydrogel Contact Lenses

Patrizia Paradiso; Ana Paula Serro; Benilde Saramago; R. Colaço; Anuj Chauhan

Symptoms of bacterial and fungal keratitis are typically treated through the frequent application of antibiotic and antifungal eye drops. The high frequency of half hourly or hourly eye drop administration required to treat these indications is tedious and could reduce compliance. Here, we combine in vitro experiments with a mathematical model to develop therapeutic soft contact lenses to cure keratitis by extended release of suitable drugs. We specifically focus on increasing the release duration of levofloxacin and chlorhexidine from 1-DAY ACUVUE(®) TrueEye™ and ACUVUE OASYS(®) contact lenses by incorporating vitamin E diffusion barriers. Results show that 20% of vitamin E loading in the contact lens increases the release duration of levofloxacin to 100 h and 50 h from 1-DAY ACUVUE(®) TrueEye™ and ACUVUE OASYS(®), respectively, which is a 3- and 6-fold increase, respectively, for the 2 lenses. For chlorhexidine, the increase is 2.5- and 10-fold, for the TrueEye™ and OASYS(®), respectively, to 130 h and 170 h. The mass of drug loaded in the lenses can be controlled to achieve a daily release comparable to the commonly prescribed eye drop therapy. The vitamin E-loaded lenses retain all critical properties for in vivo use.


Journal of Biomedical Materials Research Part B | 2015

Effect of plasma treatment on the performance of two drug-loaded hydrogel formulations for therapeutic contact lenses

Patrizia Paradiso; Virginia Chu; Luís F. Santos; Ana Paula Serro; R. Colaço; Benilde Saramago

Although the plasma technology has long been applied to treat contact lenses, the effect of this treatment on the performance of drug-loaded contact lenses is still unclear. The objective of this work is to study the effect of nitrogen plasma treatment on two drug-loaded polymeric formulations which previously demonstrated to be suitable for therapeutic contact lenses: a poly-hydroxyethylmethacrylate (pHEMA) based hydrogel loaded with levofloxacin and a silicone-based hydrogel loaded with chlorhexidine. Modifications of the surface and the optical properties, and alterations in the drug release profiles and possible losses of the antimicrobial activities of the drugs induced by the plasma treatment were assessed. The results showed that, depending on the system and on the processing conditions, the plasma treatment may be beneficial for increasing wettability and refractive index, without degrading the lens surface. From the point of view of drug delivery, plasma irradiation at moderate power (200 W) decreased the initial release rate and the amount of released drug, maintaining the drug activity. For lower (100 W) and higher powers (300 W), almost no effect was detected because the treatment was, respectively, too soft and too aggressive for the lens materials.


Materials Science and Engineering: C | 2017

Sterilization of silicone-based hydrogels for biomedical application using ozone gas: Comparison with conventional techniques

Raquel Galante; Daniela Dal Molim Ghisleni; Patrizia Paradiso; Vítor D. Alves; Terezinha de Jesus Andreoli Pinto; R. Colaço; Ana Paula Serro

Sterilization of hydrogels is challenging due to their often reported sensitivity to conventional methods involving heat or radiation. Although aseptic manufacturing is a possibility, terminal sterilization is safer in biological terms, leading to a higher overall efficiency, and thus should be used whenever it is possible. The main goal of this work was to study the applicability of an innovative ozone gas terminal sterilization method for silicone-based hydrogels and compare its efficacy and effects with those of traditional sterilization methods: steam heat and gamma irradiation. Ozone gas sterilization is a method with potential interest since it is reported as a low cost green method, does not leave toxic residues and can be applied to thermosensitive materials. A hydrogel intended for ophthalmological applications, based on tris(trimethylsiloxy)silyl] propyl methacrylate, was prepared and extensively characterized before and after the sterilization procedures. Alterations regarding transparency, swelling, wettability, ionic permeability, friction coefficient, mechanical properties, topography and morphology and chemical composition were monitored. Efficacy of the ozonation was accessed by performing controlled contaminations and sterility tests. In vitro cytotoxicity testes were also performed. The results show that ozonation may be applied to sterilize the studied material. A treatment with 8 pulses allowed sterilizing the material with bioburdens≤103CFU/mL, preserving all the studied properties within the required known values for contact lenses materials. However, a higher exposure (10 pulses) led to some degradation of the material and induced mild cytotoxicity. Steam heat sterilization led to an increase of swelling capacity and a decrease of the water contact angle. Regarding gamma irradiation, the increase of irradiation dose led to an increase of the friction coefficient. The higher dose (25kGy) originated surface degradation and affected the mechanical properties of the hydrogel by inducing a significant increase of the Youngs modulus. Overall, the results show that ozonation may be considered as a valid and promising alternative for the sterilization of silicon-based hydrogels for biomedical applications.


PLOS ONE | 2016

Diffusion-Based Design of Multi-Layered Ophthalmic Lenses for Controlled Drug Release

Andreia F.R. Pimenta; Ana Paula Serro; Patrizia Paradiso; Benilde Saramago; R. Colaço

The study of ocular drug delivery systems has been one of the most covered topics in drug delivery research. One potential drug carrier solution is the use of materials that are already commercially available in ophthalmic lenses for the correction of refractive errors. In this study, we present a diffusion-based mathematical model in which the parameters can be adjusted based on experimental results obtained under controlled conditions. The model allows for the design of multi-layered therapeutic ophthalmic lenses for controlled drug delivery. We show that the proper combination of materials with adequate drug diffusion coefficients, thicknesses and interfacial transport characteristics allows for the control of the delivery of drugs from multi-layered ophthalmic lenses, such that drug bursts can be minimized, and the release time can be maximized. As far as we know, this combination of a mathematical modelling approach with experimental validation of non-constant activity source lamellar structures, made of layers of different materials, accounting for the interface resistance to the drug diffusion, is a novel approach to the design of drug loaded multi-layered contact lenses.


Journal of Biomedical Materials Research Part B | 2017

Drug release from liposome coated hydrogels for soft contact lenses: the blinking and temperature effect

Patrizia Paradiso; R. Colaço; J.L.G. Mata; Rumen Krastev; Benilde Saramago; Ana Paula Serro

In this article, liposome-based coatings aiming to control drug release from therapeutic soft contact lenses (SCLs) materials are analyzed. A PHEMA based hydrogel material loaded with levofloxacin is used as model system for this research. The coatings are formed by polyelectrolyte layers containing liposomes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and DMPC + cholesterol (DMPC + CHOL). The effect of friction and temperature on the drug release is investigated. The aim of the friction tests is to simulate the blinking of the eyelid in order to verify if the SCLs materials coated with liposomes are able to keep their properties, in particular the drug release ability. It was observed that under the study conditions, friction did not affect significantly the drug release from the liposome coated PHEMA material. In contrast, increasing the temperature of release leads to an increase of the drug diffusion rate through the hydrogel. This phenomenon is recorded both in the control and in the coated samples.


Journal of Molecular Catalysis B-enzymatic | 2016

An integrated approach for the detailed characterization of an immobilized enzyme

Filipe Carvalho; Patrizia Paradiso; Benilde Saramago; A.M. Ferraria; Ana Maria Botelho do Rego; Pedro Fernandes

Collaboration


Dive into the Patrizia Paradiso's collaboration.

Top Co-Authors

Avatar

Ana Paula Serro

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Benilde Saramago

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

R. Colaço

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Raquel Galante

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Filipe Carvalho

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

J.L.G. Mata

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Luís F. Santos

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Pedro Fernandes

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge