Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Pellegatti is active.

Publication


Featured researches published by Patrizia Pellegatti.


Science | 2011

Autophagy-Dependent Anticancer Immune Responses Induced by Chemotherapeutic Agents in Mice

Mickaël Michaud; Isabelle Martins; Abdul Qader Sukkurwala; Sandy Adjemian; Yuting Ma; Patrizia Pellegatti; Shensi Shen; Oliver Kepp; Marie Scoazec; Grégoire Mignot; Santiago Rello-Varona; Laurie Menger; Erika Vacchelli; Lorenzo Galluzzi; François Ghiringhelli; Francesco Di Virgilio; Laurence Zitvogel; Guido Kroemer

The release of adenosine triphosphate through autophagy can promote antitumor immune responses. Antineoplastic chemotherapies are particularly efficient when they elicit immunogenic cell death, thus provoking an anticancer immune response. Here we demonstrate that autophagy, which is often disabled in cancer, is dispensable for chemotherapy-induced cell death but required for its immunogenicity. In response to chemotherapy, autophagy-competent, but not autophagy-deficient, cancers attracted dendritic cells and T lymphocytes into the tumor bed. Suppression of autophagy inhibited the release of adenosine triphosphate (ATP) from dying tumor cells. Conversely, inhibition of extracellular ATP-degrading enzymes increased pericellular ATP in autophagy-deficient tumors, reestablished the recruitment of immune cells, and restored chemotherapeutic responses but only in immunocompetent hosts. Thus, autophagy is essential for the immunogenic release of ATP from dying cells, and increased extracellular ATP concentrations improve the efficacy of antineoplastic chemotherapies when autophagy is disabled.


PLOS ONE | 2008

Increased level of extracellular ATP at tumor sites: In vivo imaging with plasma membrane luciferase

Patrizia Pellegatti; Lizzia Raffaghello; Giovanna Bianchi; Federica Piccardi; Vito Pistoia; Francesco Di Virgilio

Background There is growing awareness that tumour cells build up a “self-advantageous” microenvironment that reduces effectiveness of anti-tumour immune response. While many different immunosuppressive mechanisms are likely to come into play, recent evidence suggests that extracellular adenosine acting at A2A receptors may have a major role in down-modulating the immune response as cancerous tissues contain elevated levels of adenosine and adenosine break-down products. While there is no doubt that all cells possess plasma membrane adenosine transporters that mediate adenosine uptake and may also allow its release, it is now clear that most of extracellularly-generated adenosine originates from the catabolism of extracellular ATP. Methodology/Principal Findings Measurement of extracellular ATP is generally performed in cell supernatants by HPLC or soluble luciferin-luciferase assay, thus it generally turns out to be laborious and inaccurate. We have engineered a chimeric plasma membrane-targeted luciferase that allows in vivo real-time imaging of extracellular ATP. With this novel probe we have measured the ATP concentration within the tumour microenvironment of several experimentally-induced tumours. Conclusions/Significance Our results show that ATP in the tumour interstitium is in the hundrends micromolar range, while it is basically undetectable in healthy tissues. Here we show that a chimeric plasma membrane-targeted luciferase allows in vivo detection of high extracellular ATP concentration at tumour sites. On the contrary, tumour-free tissues show undetectable extracellular ATP levels. Extracellular ATP may be crucial for the tumour not only as a stimulus for growth but also as a source of an immunosuppressive agent such as adenosine. Our approach offers a new tool for the investigation of the biochemical composition of tumour milieu and for development of novel therapies based on the modulation of extracellular purine-based signalling.


Nature Medicine | 2010

Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R

Konrad Wilhelm; Jayanthi Ganesan; Tobias Müller; Christoph Dürr; Melanie Grimm; Andreas Beilhack; Christine D. Krempl; Stephan Sorichter; Ulrike V. Gerlach; Eva Jüttner; Alf Zerweck; Frank Gärtner; Patrizia Pellegatti; Francesco Di Virgilio; Davide Ferrari; Neeraja Kambham; Paul Fisch; Jürgen Finke; Marco Idzko; Robert Zeiser

Danger signals released upon cell damage can cause excessive immune-mediated tissue destruction such as that found in acute graft-versus-host disease (GVHD), allograft rejection and systemic inflammatory response syndrome. Given that ATP is found in small concentrations in the extracellular space under physiological conditions, and its receptor P2X7R is expressed on several immune cell types, ATP could function as a danger signal when released from dying cells. We observed increased ATP concentrations in the peritoneal fluid after total body irradiation, and during the development of GVHD in mice and in humans. Stimulation of antigen-presenting cells (APCs) with ATP led to increased expression of CD80 and CD86 in vitro and in vivo and actuated a cascade of proinflammatory events, including signal transducer and activator of transcription-1 (STAT1) phosphorylation, interferon-γ (IFN-γ) production and donor T cell expansion, whereas regulatory T cell numbers were reduced. P2X7R expression increased when GVHD evolved, rendering APCs more responsive to the detrimental effects of ATP, thereby providing positive feedback signals. ATP neutralization, early P2X7R blockade or genetic deficiency of P2X7R during GVHD development improved survival without immune paralysis. These data have major implications for transplantation medicine, as pharmacological interference with danger signals that act via P2X7R could lead to the development of tolerance without the need for intensive immunosuppression.


Journal of Experimental Medicine | 2010

Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity

Felix C. Weber; Philippp R. Esser; Tobias Müller; Jayanthi Ganesan; Patrizia Pellegatti; Markus M. Simon; Robert Zeiser; Marko Idzko; Thilo Jakob; Stefan F. Martin

Engagement of P2X7 on mouse dendritic cells, presumably by ATP released in response to contact allergen, is needed for IL-1β production and the sensitization phase of contact hypersensitivity.


Journal of Immunology | 2005

A His-155 to Tyr Polymorphism Confers Gain-of-Function to the Human P2X7 Receptor of Human Leukemic Lymphocytes

Giulio Cabrini; Simonetta Falzoni; Sylvia Forchap; Patrizia Pellegatti; Alessandra Balboni; Paola Agostini; Antonio Cuneo; Gianluigi Castoldi; O. Roberto Baricordi; Francesco Di Virgilio

The P2X7R is an ATP-gated cation channel expressed in hemopoietic cells that participates in both cell proliferation and apoptosis. Expression and function of the P2X7R have been associated with the clinical course of patients affected by chronic lymphocytic leukemia (CLL). Functional variants causing loss-of-function of the P2X7R have been identified, namely, polymorphisms 1513A>C (E496A), 1729T>A (I568N), and 946G>A (R307Q). Here we investigated other nonsynonymous polymorphisms located either in the extracellular portion of the receptor, such as the 489C>T (H155Y) variant, or in the long cytoplasmic tail of the receptor, such as the 1068G>A (A348T), 1096C>G (T357S), and 1405A>G (Q460R) variants. P2X7R function was monitored by measuring ATP-induced Ca2+ influx in PBL of patients affected by CLL and in recombinant human embryonic kidney (HEK) 293 cells stably transfected with each single P2X7 allelic variant. Ca2+ influx was markedly reduced in association with the 1513C allele, whereas variants located in the same intracellular domain, such as the 1068A, 1096G, or 1405G variants, were associated with a minor functional decrease. Significant Ca2+ flux increase was observed in lymphocytes from CLL patients bearing the 489C/T and 489T/T genotypes in association with the 1513A/A genotype. Functional analysis in recombinant HEK293 cells expressing P2X7R confirmed an increased ATP-dependent activation of the P2X7 489T mutant with respect to the wild type receptor, as assessed by both by [Ca2+]i influx and ethidium uptake experiments. These data identify the 489C>T as a gain-of-function polymorphism of the P2X7R.


The FASEB Journal | 2010

Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor

Elena Adinolfi; Maria Cirillo; Ronja Woltersdorf; Simonetta Falzoni; Paola Chiozzi; Patrizia Pellegatti; Maria Giulia Callegari; Doriana Sandonà; Fritz Markwardt; Günther Schmalzing; Francesco Di Virgilio

P2X7 is the largest member of the P2X subfamily of purinergic receptors. A typical feature is the carboxyl tail, which allows formation of a large pore. Recently a naturally occurring truncated P2X7 splice variant, isoform B (P2X7B), has been identified. Here we show that P2X7B expression in HEK293 cells, a cell type lacking endogenous P2X receptors, mediated ATP‐stimulated channel activity but not plasma membrane permeabilization, raised endoplasmic reticulum Ca2+ content, activated the transcription factor NFATc1, increased the cellular ATP content, and stimulated growth. In addition, P2X7B‐transfected HEK293 cells (HEK293‐P2X7B), like most tumor cells, showed strong soft agarinfiltrating ability. When coexpressed with full‐length P2X7 (P2X7A), P2X7B coassembled with P2X7A into a heterotrimer and potentiated all known responses mediated by this latter receptor. P2X7B mRNA was found to be widely distributed in human tissues, especially in the immune and nervous systems, and to a much higher level than P2X7A. Finally, P2X7B expression was increased on mitogenic stimulation of peripheral blood lymphocyte. Altogether, these data show that P2X7B is widely expressed in several human tissues, modulates P2X7A functions, participates in the control of cell growth, and may help understand the role of the P2X7 receptor in the control of normal and cancer cell proliferation.—Adinolfi, E., Cirillo, M., Woltersdorf, R., Falzoni, S., Chiozzi, P., Pellegatti, P., Callegari, M. G., Sandonà, D., Markwardt, F., Schmalzing, G., Di Virgilio, F. Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J. 24, 3393–3404 (2010). www.fasebj.org


Journal of Biological Chemistry | 2008

The Human Cathelicidin LL-37 Modulates the Activities of the P2X7 Receptor in a Structure-dependent Manner

Linda Tomasinsig; Cinzia Pizzirani; Barbara Skerlavaj; Patrizia Pellegatti; Sara Gulinelli; Alessandro Tossi; Francesco Di Virgilio; Margherita Zanetti

Extracellular ATP, released at sites of inflammation or tissue damage, activates the P2X7 receptor, which in turn triggers a range of responses also including cell proliferation. In this study the ability of the human cathelicidin LL-37 to stimulate fibroblast growth was inhibited by commonly used P2X7 blockers. We investigated the structural requirements of the growth-promoting activity of LL-37 and found that it did not depend on helix sense (the all-d analog was active) but did require a strong helix-forming propensity in aqueous solution (a scrambled analog and primate LL-37 orthologs devoid of this property were inactive). The involvement of P2X7 was analyzed using P2X7-expressing HEK293 cells. LL-37 induced proliferation of these cells, triggered Ca2+ influx, promoted ethidium bromide uptake, and synergized with benzoyl ATP to enhance the pore and channel functions of P2X7. The activity of LL-37 had an absolute requirement for P2X7 expression as it was blocked by the P2X7 inhibitor KN-62, was absent in cells lacking P2X7, and was restored by P2X7 transfection. Of particular interest, LL-37 led to pore-forming activity in cells expressing a truncated P2X7 receptor unable to generate the non-selective pore typical of the full-length receptor. Our results indicate that P2X7 is involved in the proliferative cell response to LL-37 and that the structural/aggregational properties of LL-37 determine its capacity to modulate the activation state of P2X7.


The FASEB Journal | 2011

P2X7 receptor drives osteoclast fusion by increasing the extracellular adenosine concentration

Patrizia Pellegatti; Simonetta Falzoni; Giovanna Donvito; Irma Lemaire; Francesco Di Virgilio

Defects in bone homeostasis are a major health problem. Osteoclast differentiation and activation have a crucial role in bone remodeling in health and disease. Osteoclasts are bone‐resorbing cells derived from mononuclear phagocyte progenitors. The key event in osteoclast formation is fusion of mononucleate precursors to form mature multinucleated osteclasts. Here we provide evidence of an absolute requirement for the P2X7 receptor, ATP release, and adenosine signaling in human osteoclast formation, as shown by the following findings: macrophage‐colony stimulating factor/receptor activator for nuclear fac‐tor‐κB ligand (M‐CSF/RANKL)‐stimulated fusion of human monocytes is fully prevented by an anti‐P2X7 mAb, by specific P2X7 pharmacological antagonists, or by inhibition of CD39/NTPDase;fusion‐competent monocytes release ATP via the P2X7 receptor; accelerated degradation of released ATP by addition of either apyrase or hexokinase strongly increases fusion; removal of extracellular adenosine by adenosine deaminase blocks, while addition of exogenous adenosine strongly potentiates, fusion; and pharmacologic stimulation of the adenosine A2A receptor increases, while selective A2A blockade inhibits, fusion. These results show that the purinergic axis plays a crucial and as yet undescribed role in osteoclast formation and reconcile previous evidence advocating a keyrole for either ATP or adenosine receptors in multinucleated giant cell formation.—Pellegatti, P., Falzoni, S., Donvito, G., Lemaire, I., Di Virgilio, F. P2X7 receptor drives osteoclast fusion by increasing the extracellular adenosine concentration. FASEB J. 25, 1264–1274 (2011). www.fasebj.org


Journal of Immunology | 2006

Involvement of the Purinergic P2X7 Receptor in the Formation of Multinucleated Giant Cells

Irma Lemaire; Simonetta Falzoni; Natacha Leduc; Bin Zhang; Patrizia Pellegatti; Elena Adinolfi; Paola Chiozzi; Francesco Di Virgilio

Multinucleated giant cells (MGC), a hallmark of chronic inflammatory reactions, remain an enigma of cell biology. There is evidence implicating the purinergic P2X7 receptor in the fusion process leading to MGC. To investigate this, we used HEK 293 cells stably transfected with either 1) the full-length rat P2X7 receptor (P2X7 cells), 2) a rat P2X7 receptor lacking the C-terminal domain (P2X7TC), or 3) a mock vector, and rat alveolar macrophages (MA) expressing the native receptor. P2X7 cells cultured in serum-free medium formed increased numbers of MGC and displayed a higher fusion index compared with mock transfectants. Stimulation of P2X7 pore-forming activity in P2X7 cells by polymyxin B (PMB) further increased significantly the formation of MGC. Conversely, blockers of P2X-receptors including oxidized ATP, brilliant blue G, and pyridoxal phosphate-6-azophenyl-2′-4′-disulfonic acid inhibited significantly MGC formation in both unstimulated and PMB-stimulated P2X7-transfected cells. In contrast, cells transfected with the truncated P2X7TC were devoid of pore-forming activity, did not respond to PMB stimulation, and failed to form enhanced numbers of MGC, thus behaving as mock transfectants. As found for P2X7-transfected cells, PMB also potentiated dose-dependently the formation of multinucleated MA by rat alveolar MA. Pretreatment with oxidized ATP abrogated the PMB stimulatory effects. Together, these data demonstrate unequivocally the participation of P2X7 receptor in the process of MGC formation. Our study also provides evidence suggesting that stimulation of the P2X7 receptor pathway in MA may mediate increased formation of MGC during chronic inflammatory reactions.


Gastroenterology | 2012

Purinergic P2Y2 Receptors Promote Neutrophil Infiltration and Hepatocyte Death in Mice With Acute Liver Injury

Cemil Korcan Ayata; Stephanie C. Ganal; Birgit Hockenjos; Karolina Willim; Rodolfo de Paula Vieira; Melanie Grimm; Bernard Robaye; Jean-Marie Boeynaems; Francesco Di Virgilio; Patrizia Pellegatti; Andreas Diefenbach; Marco Idzko; Peter Hasselblatt

BACKGROUND & AIMS During progression of liver disease, inflammation affects survival of hepatocytes. Endogenous release of adenosine triphosphate (ATP) in the liver activates purinergic P2 receptors (P2R), which regulate inflammatory responses, but little is known about the roles of these processes in the development of acute hepatitis. METHODS We induced acute hepatitis in C57BL/6 mice by intravenous injection of concanavalin A and then analyzed liver concentrations of ATP and expression of P2R. We assessed P2Y(2)R(-/-) mice and C57BL/6 wild-type mice injected with suramin, a pharmacologic inhibitor of P2YR. Toxic liver failure was induced in mice by intraperitoneal injection of acetaminophen. Hepatocyte-specific functions of P2R signaling were analyzed in primary mouse hepatocytes. RESULTS Induction of acute hepatitis in wild-type C57BL/6 mice released large amounts of ATP from livers and induced expression of P2Y(2)R. Liver damage and necrosis were greatly reduced in P2Y(2)R(-/-) mice and C57BL/6 mice given injections of suramin. Acetaminophen-induced liver damage was reduced in P2Y(2)R(-/-) mice. Analysis of liver-infiltrating immune cells during acute hepatitis revealed that expression of P2Y(2)R in bone marrow-derived cells was required for liver infiltration by neutrophils and subsequent liver damage. Hepatic expression of P2Y(2)R interfered with expression of genes that regulate cell survival, and promoted tumor necrosis factor-α-mediated cell death, in a cell-autonomous manner. CONCLUSIONS Extracellular ATP and P2Y(2)R have cell-type specific, but synergistic functions during liver damage that regulate cellular immune responses and promote hepatocyte death. Reagents designed to target P2Y(2)R might be developed to treat inflammatory liver disease.

Collaboration


Dive into the Patrizia Pellegatti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge