Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Rossi is active.

Publication


Featured researches published by Patrizia Rossi.


Chemistry: A European Journal | 2011

A Macrocyclic Ligand as Receptor and ZnII‐Complex Receptor for Anions in Water: Binding Properties and Crystal Structures

Gianluca Ambrosi; Mauro Formica; Vieri Fusi; Luca Giorgi; Eleonora Macedi; Mauro Micheloni; Paola Paoli; Roberto Pontellini; Patrizia Rossi

Binding properties of 24,29-dimethyl-6,7,15,16-tetraoxotetracyclo[19.5.5.0(5,8).0(14,17)]-1,4,9,13,18,21,24,29-octaazaenatriaconta-Δ(5,8),Δ(14,17)-diene ligand L towards Zn(II) and anions, such as the halide series and inorganic oxoanions (phosphate (Pi), sulfate, pyrophosphate (PPi), and others), were investigated in aqueous solution; in addition, the Zn(II)/L system was tested as a metal-ion-based receptor for the halide series. Ligand L is a cryptand receptor incorporating two squaramide functions in an over-structured chain that connects two opposite nitrogen atoms of the Me(2)[12]aneN(4) polyaza macrocyclic base. It binds Zn(II) to form mononuclear species in which the metal ion, coordinated by the Me(2)[12]aneN(4) moiety, lodges inside the three-dimensional cavity. Zn(II)-containing species are able to bind chloride and fluoride at the physiologically important pH value of 7.4; the anion is coordinated to the metal center but the squaramide units play the key role in stabilizing the anion through a hydrogen-bonding network; two crystal structures reported here clearly show this aspect. Free L is able to bind fluoride, chloride, bromide, sulfate, Pi, and PPi in aqueous solution. The halides are bound at acidic pH, whereas the oxoanions are bound in a wide range of pH values ranging from acidic to basic. The cryptand cavity, abundant in hydrogen-bonding sites at all pH values, allows excellent selectivity towards Pi to be achieved mainly at physiological pH 7.4. By joining amine and squaramide moieties and using this preorganized topology, it was possible, with preservation of the solubility of the receptor, to achieve a very wide pH range in which oxoanions can be bound. The good selectivity towards Pi allows its discrimination in a manner not easily obtainable with nonmetallic systems in aqueous environment.


Inorganic Chemistry | 2010

Efficient fluorescent sensors based on 2,5-diphenyl[1,3,4]oxadiazole: a case of specific response to Zn(II) at physiological pH.

Gianluca Ambrosi; Mauro Formica; Vieri Fusi; Luca Giorgi; Eleonora Macedi; Mauro Micheloni; Paola Paoli; Roberto Pontellini; Patrizia Rossi

The coordination properties and photochemical responses of three fluorescent polyamine macrocycles, 9,12,15,24,25-pentaaza-26-oxatetracyclo[21.2.1.0(2,7).0(17,22)]hexaicosa-2,4,6,17,19,21,23,25(1)-octaene (L1), 9,12,15,18,27,28-hexaaza-29-oxatetracyclo[24.2.1.0(2,7).0(20,25)]enneicosa-2,4,6,20,22,24,26,28(1)-octaene (L2), and 9,12,15,18,21,30,31-heptaaza-32-oxatetracyclo[27.2.1.0(2,7).0(23,28)]diatriconta-2,4,6,23,25,27,29,31(1)-octaene (L3), toward Cu(II), Zn(II), Cd(II), and Pb(II) are reported. Each ligand contains the 2,5-diphenyl[1,3,4]oxadiazole (PPD) moiety inserted in a polyamine macrocycle skeleton. The stability constants were determined by means of potentiometric measurements in aqueous solution. L1 forms mononuclear complexes only with Cu(II). L2 and L3 form stable mononuclear species with all of the metals, while L3 is able to form dinuclear Cu(II) species. The fluorescence of all ligands was totally quenched by the presence of Cu(II). L2 behaves as an OFF-ON sensor for Zn(II) under physiological conditions, even in the presence of interfering species such as Cd(II) and Pb(II). This ligand combines selective binding of Zn(II) with a highly specific fluorescent response to Zn(II) due to the chelating enhancement of fluorescence (CHEF) effect. The interaction of Zn(II), Cd(II), and Pb(II) with L3 does not produce an appreciable enhancement of fluorescence at the same pH. The different behavior is attributed to the cavity size of the macrocycle and to the number of amine functions. L2 possesses the best arrangement of these two characteristics, allowing a full participation of all of the amine functions in metal coordination, as shown by the crystal structures of [CuL2(ClO(4))](ClO(4))·H(2)O and [ZnL2Br]Br·H(2)O species; this prevents the PET effect and supplies the higher CHEF effect. The interaction between L2 and Zn(II) can also be observed with the naked eye as an intense sky blue emission.


Journal of The Electrochemical Society | 2004

Study of the Thermal Properties of Pr(III) Precursors and Their Implementation in the MOCVD Growth of Praseodymium Oxide Films

Raffaella Lo Nigro; Roberta G. Toro; Graziella Malandrino; Ignazio L. Fragalà; Patrizia Rossi; Paolo Dapporto

A praseodymium adduct, Pr(hfa) 3 .diglyme [(H-hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentandione, diglyme = CH 3 O(CH 2 CH 2 O) 2 CH 3 )] has been synthesized. It has been applied as a Pr source for the metallorganic chemical vapor deposition (MOCVD) of praseodymium containing films on silicon substrate and compared with Pr(tmhd) 3 [(H-tmhd = 2,2,6,6-tetramethyl-3,5-heptandione)] precursor. Physical and thermal properties of both Pr(hfa) 3 .diglyme and Pr(tmhd)3 precursors have been fully analyzed and their efficacy as MOCVD precursors for the growth of praseodymium oxide films have been fully tested. Depending on the oxygen partial pressure (p O2 ), different praseodymium oxide phases have been obtained.


Chemical Communications | 2009

A new versatile solvatochromic amino-macrocycle. From metal ions to cell sensing in solution and in the solid state

Gianluca Ambrosi; Samuele Ciattini; Mauro Formica; Vieri Fusi; Luca Giorgi; Eleonora Macedi; Mauro Micheloni; Paola Paoli; Patrizia Rossi; Giovanni Zappia

A new fluorescent NBD-polyaza-macrocycle sensor (L) was synthesized. The coordination of Cu(ii) and Zn(ii) in acetonitrile switches on the fluorescence with different emission wavelengths. Cu(ii) complexes showed solid-state fluorescence. Both L and Cu-complex interact with human cell line (U937) highlighting the cell membrane by fluorescence microscopy.


Inorganic Chemistry | 2008

New extended magnetic systems based on oxalate and iron(III) ions.

Donatella Armentano; Teresa F. Mastropietro; Giovanni De Munno; Patrizia Rossi; Francesc Lloret; Miguel Julve

A series of oxalate-bridged iron(III) complexes have been synthesized by the reaction of FeCl 3 with oxalic acid (H 2ox) and XCl, where X is a substituted univalent ammonium or an alkaline cation. We have obtained basically two different types of compounds by varying the nature and the shape of the counterion, with the dimensionality of the resulting product being strongly influenced by the counterion. Three-dimensional (3D) networks of oxo- and oxalato-bridged iron(III) ions of the general formula {X 2[Fe 2O(ox) 2Cl 2]. pH 2O} n have been obtained for X = Li (+) ( 1), Na (+) ( 2), and K (+) ( 3) with p = 4 and X = MeNH 3 (+) ( 4), Me 2NH 2 (+) ( 5), and EtNH 3 (+) ( 6) with p = 2. Similar 3D hydroxo- and oxalato-bridged iron(III) networks of the formula {X[Fe 2(OH)(ox) 2Cl 2].2H 2O} n resulted for X = EtNH 3 (+) ( 7a) and PrNH 3 (+) ( 8). Compound 7a undergoes a solid-to-solid transformation, leading to a new species of the formula {(H 3O)(EtNH 3)[Fe 2O(ox) 2Cl 2].H 2O} n ( 7b). Chainlike compounds of the formula {X 2[Fe 2(ox) 2Cl 4]. pH 2O} n [X = Me 2NH 2 (+)( 9, p = 1), Me 3NH (+) ( 10, p = 2), and Me 4N (+) ( 11, p = 0)] have been obtained for the bulkier alkylammonium cations. Magnetic susceptibility measurements in the temperature range 1.9-295 K show the occurrence of weak ferromagnetic ordering due to spin canting in the 3D networks 1- 8, with the value of the critical temperature ( T c) varying with the cation in the range 26 K ( 2) to 70 K ( 8) without significant structural modifications. The last three one-dimensional compounds exhibit the typical behavior of antiferromagnetically coupled chains of interacting spin sextets [ J = -8.3 ( 9), -6.9 ( 10), and -8.4 ( 11) cm (-1) with H = - J summation operator i S i S i+1 ].


New Journal of Chemistry | 2008

New branched macrocyclic ligand and its side-arm, two urea-based receptors for anions: synthesis, binding studies and crystal structure

Mauro Formica; Vieri Fusi; Eleonora Macedi; Paola Paoli; Giovanni Piersanti; Patrizia Rossi; Giovanni Zappia; Pierfrancesco Orlando

The synthesis and characterization of the two new hosting molecules for anions 4(N),10(N)-bis-[2-(4-nitrophenylureido)acetamido]-1,7-dimethyl-1,4,7,10-tetraazacyclododecane (L1) and 1-((diethylcarbamoyl)methyl)-3-(4-nitrophenyl)urea (L2) are reported. L1 is a branched tetraazamacrocycle bearing two p-nitrophenylureido groups as side-arms, whereas L2 has the same linear chain and binding moiety of L1 side-arm. The best synthetic routes for use in obtaining L1 were explored, affording the synthesis of the new intermediate 4, a versatile building block for further functionalized branched macrocyclic hosts. The binding properties of both ligands towards the halides series and acetate anions (G) were investigated by NMR and UV-Vis spectroscopy in a dimethyl sulfoxide–0.5% water solution. Both ligands interact with F−, Cl− and AcO− while Br− and I− did not. The NMR experiments proved that the binding occurs via H-bond to the ureido fragments. Fluoride anion is basic enough to deprotonate the ureido group of both ligands, thus preventing the determination of the addition constants to both ligands; this was instead possible for Cl− and AcO−. L1 forms G–L species of 1 : 1 ([GL1]) and 2 : 1 ([G2L1]) stoichiometry while L2 forms only the 1 : 1 [GL2] species. The higher value of the formation constant of the [AcOL1]−vs. the [AcOL2]− species (log K = 5.5 vs. 2.8 for the reaction AcO− + L = AcOL−) suggested that both side-arms of L1 cooperate in binding acetate; this does not occur with Cl−. The results confirmed that this tetraaza-macrocyclic base acts as a preorganizing scaffold for side-arms when they are linked to it via an amide function. The crystal structure of L2·H2O is also reported.


Inorganic Chemistry Communications | 2000

A novel dimer of oxo-di(acetato)-bridged manganese(III) dimers complex of potential biological significance

Rafael Ruiz; Claudio Sangregorio; Andrea Caneschi; Patrizia Rossi; Ana B. Gaspar; José Antonio Real; M. Carmen Muñoz

Abstract Assembly of the tetranuclear oxomanganese(III) acetato cluster [Mn4O2(O2CMe)7(phen)2](BF4) from the dinuclear oxo-di(acetato)-bridged manganese(III) species [Mn2O(O2CMe)2(H2O)2(phen)2](BF4)2·3H2O in aqueous/acetic acid MeOH solution occurs via the new ‘dimer of dimers’ MnIII complex [Mn2O(O2CMe)3(H2O)(phen)2](BF4)·MeOH possesing an unprecedent [Mn4(μ-O)2(μ-O2CMe)4(μ-OH2…O2CMe)2] core.


Journal of Materials Chemistry | 2004

Viable route for the synthesis of the anhydrous Co(hfac)2 adduct with monoglyme: a useful precursor for thin films of CoO

Antonino Gulino; Paolo Dapporto; Patrizia Rossi; G. Anastasi; Ignazio L. Fragalà

The [Co(hfac)2·CH3OCH2CH2OCH3] adduct was synthesised and investigated by X-ray crystal structure, mass spectra, TG-DTG thermal measurements and infrared transmittance spectroscopy. X-Ray single crystal data provide evidence of a slightly distorted octahedral cobalt cation, coordinated with four oxygen atoms of two hfac anions and two oxygens of the monoglyme molecule. Deposition experiments, in a low-pressure horizontal hot-wall reactor, on optically transparent SiO2 substrates, using the title complex, resulted in CoO films. XRD measurements show that CoO consists of cubic, highly oriented, crystals. The surface atomic composition of the films was investigated by XPS. No fluorine contamination was detected.


Chemistry: A European Journal | 2012

Multi-use NBD-based tetra-amino macrocycle: fluorescent probe for metals and anions and live cell marker.

Stefano Amatori; Gianluca Ambrosi; Mirco Fanelli; Mauro Formica; Vieri Fusi; Luca Giorgi; Eleonora Macedi; Mauro Micheloni; Paola Paoli; Roberto Pontellini; Patrizia Rossi; Maria Antonietta Varrese

Ligand L (4-(7-nitrobenzo[1,2,5]oxadiazole-4-yl)-1,7-dimethyl-1,4,7,10-tetra-azacyclododecane) is a versatile fluorescent sensor useful for Cu(II), Zn(II) and Cd(II) metal detection, as a building block of fluorescent metallo-receptor for halide detection, and as an organelle marker inside live cells. Ligand L undergoes a chelation-enhanced fluorescence (CHEF) effect upon metal coordination in acetonitrile solution. In all three complexes investigated the metal cation is coordinatively unsaturated; thus, it can bind secondary ligands as anionic species. The crystal structure of [ZnLCl](ClO(4)) is discussed. Cu(II) and Zn(II) complexes are quenched upon halide interaction, whereas the [CdL](2+) species behaves as an OFF-ON sensor for halide anions in acetonitrile solution. The mechanism of the fluorescence response in the presence of the anion depends on the nature of the metal ion employed and has been studied by spectroscopic methods, such as NMR spectroscopy, UV/Vis and fluorescence techniques and by computational methods. Subcellular localization experiments performed on HeLa cells show that L mainly localizes in spot-like structures in a polarized portion of the cytosol that is occupied by the Golgi apparatus to give a green fluorescence signal.


Inorganic Chemistry | 2009

Polynuclear Complexes: Two Amino−Phenol Macrocycles Spaced by Several Linear Polyamines; Synthesis, Binding Properties, and Crystal Structure

Gianluca Ambrosi; Mauro Formica; Vieri Fusi; Luca Giorgi; Eleonora Macedi; Mauro Micheloni; Paola Paoli; Patrizia Rossi

The synthesis and characterization of the new polytopic ligands 1,14-bis(3,6,9-triaza-15-hydroxybicyclo[9.3.1]pentadeca-11,13,1(15)-trien-6-yl)-3,6,9,12-tetraazatetradecane L1, 1,15-bis(3,6,9-triaza-15-hydroxybicyclo[9.3.1]pentadeca-11,13,1(15)-trien-6-yl)-3,6,10,13-tetraazapentadecane L2, and 1,16-bis(3,6,9-triaza-15-hydroxybicyclo[9.3.1]pentadeca-11,13,1(15)-trien-6-yl)-3,7,10,14-tetraazahexadecane L3, containing two equal amino-phenol macrocycles spaced by several linear tetraamines, are reported. The basicity and coordination behavior toward the Cu(II) ion were potentiometrically determined in aqueous solution at 298.1 K. All the ligands show similar acid-base properties behaving as octaprotic bases in the examined pH range (pH = 2-12). The acid protons of L1-L3 cannot be removed under the experimental conditions used; thus, the main deprotonated species obtainable in aqueous solution are the neutral ligands, having amphionic character as demonstrated by UV-vis experiments. These species are able to form mono-, di-, and trinuclear Cu(II) complexes having stoichiometry [CuL](2+), [Cu(2)L](4+), and [Cu(3)L](6+), respectively, that can lose one or two protons giving rise to [CuH(-1)L](+), [Cu(2)H(-2)L](2+), and [Cu(3)H(-2)L](4+). Depending on the used ligand to metal molar ratio, the mono-, di-, or trinuclear species prevail over the others in solution. Both di- and trinuclear complexes are able to add secondary ligands (such as OH(-)), and in some cases two Cu(II) can cooperate to stabilize them by coordinating the guest in a bridged conformation. The structure of the [Cu(2)L3](4+) cation was resolved by X-ray analysis of the {[Cu(2)L3](ClO(4))(4) x 3 H(2)O}(2) x H(2)O crystalline complex. It shows that each Cu(II) is penta-coordinated by one phenolate oxygen, two amine functions, belonging to one macrocyclic unit, and two amine functions of the spacer; in this species the distance between the two Cu(II) is about 5.3 A.

Collaboration


Dive into the Patrizia Rossi's collaboration.

Top Co-Authors

Avatar

Paola Paoli

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge