Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrizia Rovere-Querini is active.

Publication


Featured researches published by Patrizia Rovere-Querini.


EMBO Reports | 2004

HMGB1 is an endogenous immune adjuvant released by necrotic cells

Patrizia Rovere-Querini; Annalisa Capobianco; Paola Scaffidi; Barbara Valentinis; Federica Catalanotti; Marta Giazzon; Ingrid E Dumitriu; Susanne Müller; Matteo Iannacone; Catia Traversari; Marco Bianchi; Angelo A. Manfredi

Immune responses against pathogens require that microbial components promote the activation of antigen‐presenting cells (APCs). Autoimmune diseases and graft rejections occur in the absence of pathogens; in these conditions, endogenous molecules, the so‐called ‘innate adjuvants’, activate APCs. Necrotic cells contain and release innate adjuvants; necrotic cells also release high‐mobility group B1 protein (HMGB1), an abundant and conserved constituent of vertebrate nuclei. Here, we show that necrotic HMGB1−/− cells have a reduced ability to activate APCs, and HMGB1 blockade reduces the activation induced by necrotic wild‐type cell supernatants. In vivo, HMGB1 enhances the primary antibody responses to soluble antigens and transforms poorly immunogenic apoptotic lymphoma cells into efficient vaccines.


Journal of Experimental Medicine | 2008

Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: implications for the pathogenesis of SLE

Vilma Urbonaviciute; Barbara G. Fürnrohr; Silke Meister; Luis E. Munoz; Petra Heyder; Francesco De Marchis; Marco Bianchi; Carsten J. Kirschning; Hermann Wagner; Angelo A. Manfredi; Joachim R. Kalden; Georg Schett; Patrizia Rovere-Querini; Martin J. Herrmann; Reinhard E. Voll

Autoantibodies against double-stranded DNA (dsDNA) and nucleosomes represent a hallmark of systemic lupus erythematosus (SLE). However, the mechanisms involved in breaking the immunological tolerance against these poorly immunogenic nuclear components are not fully understood. Impaired phagocytosis of apoptotic cells with consecutive release of nuclear antigens may contribute to the immune pathogenesis. The architectural chromosomal protein and proinflammatory mediator high mobility group box protein 1 (HMGB1) is tightly attached to the chromatin of apoptotic cells. We demonstrate that HMGB1 remains bound to nucleosomes released from late apoptotic cells in vitro. HMGB1–nucleosome complexes were also detected in plasma from SLE patients. HMGB1-containing nucleosomes from apoptotic cells induced secretion of interleukin (IL) 1β, IL-6, IL-10, and tumor necrosis factor (TNF) α and expression of costimulatory molecules in macrophages and dendritic cells (DC), respectively. Neither HMGB1-free nucleosomes from viable cells nor nucleosomes from apoptotic cells lacking HMGB1 induced cytokine production or DC activation. HMGB1-containing nucleosomes from apoptotic cells induced anti-dsDNA and antihistone IgG responses in a Toll-like receptor (TLR) 2–dependent manner, whereas nucleosomes from living cells did not. In conclusion, HMGB1–nucleosome complexes activate antigen presenting cells and, thereby, may crucially contribute to the pathogenesis of SLE via breaking the immunological tolerance against nucleosomes/dsDNA.


Journal of Immunology | 2005

Release of High Mobility Group Box 1 by Dendritic Cells Controls T Cell Activation via the Receptor for Advanced Glycation End Products

Ingrid E. Dumitriu; Paramita Baruah; Barbara Valentinis; Reinhard E. Voll; Martin Herrmann; Peter P. Nawroth; Bernd Arnold; Marco Bianchi; Angelo A. Manfredi; Patrizia Rovere-Querini

High mobility group box 1 (HMGB1) is an abundant and conserved nuclear protein that is released by necrotic cells and acts in the extracellular environment as a primary proinflammatory signal. In this study we show that human dendritic cells, which are specialized in Ag presentation to T cells, actively release their own HMGB1 into the extracellular milieu upon activation. This secreted HMGB1 is necessary for the up-regulation of CD80, CD83, and CD86 surface markers of human dendritic cells and for IL-12 production. The HMGB1 secreted by dendritic cells is also required for the clonal expansion, survival, and functional polarization of naive T cells. Using neutralizing Abs and receptor for advanced glycation end product-deficient (RAGE−/−) cells, we demonstrate that RAGE is required for the effect of HMGB1 on dendritic cells. HMGB1/RAGE interaction results in downstream activation of MAPKs and NF-κB. The use of an ancient signal of necrosis, HMGB1, by dendritic cells to sustain their own maturation and for activation of T lymphocytes represents a profitable evolutionary mechanism.


OncoImmunology | 2014

Consensus guidelines for the detection of immunogenic cell death

Oliver Kepp; Laura Senovilla; Ilio Vitale; Erika Vacchelli; Sandy Adjemian; Patrizia Agostinis; Lionel Apetoh; Fernando Aranda; Vincenzo Barnaba; Norma Bloy; Laura Bracci; Karine Breckpot; David Brough; Aitziber Buqué; Maria G. Castro; Mara Cirone; María I. Colombo; Isabelle Cremer; Sandra Demaria; Luciana Dini; Aristides G. Eliopoulos; Alberto Faggioni; Silvia C. Formenti; Jitka Fucikova; Lucia Gabriele; Udo S. Gaipl; Jérôme Galon; Abhishek D. Garg; François Ghiringhelli; Nathalia A. Giese

Apoptotic cells have long been considered as intrinsically tolerogenic or unable to elicit immune responses specific for dead cell-associated antigens. However, multiple stimuli can trigger a functionally peculiar type of apoptotic demise that does not go unnoticed by the adaptive arm of the immune system, which we named “immunogenic cell death” (ICD). ICD is preceded or accompanied by the emission of a series of immunostimulatory damage-associated molecular patterns (DAMPs) in a precise spatiotemporal configuration. Several anticancer agents that have been successfully employed in the clinic for decades, including various chemotherapeutics and radiotherapy, can elicit ICD. Moreover, defects in the components that underlie the capacity of the immune system to perceive cell death as immunogenic negatively influence disease outcome among cancer patients treated with ICD inducers. Thus, ICD has profound clinical and therapeutic implications. Unfortunately, the gold-standard approach to detect ICD relies on vaccination experiments involving immunocompetent murine models and syngeneic cancer cells, an approach that is incompatible with large screening campaigns. Here, we outline strategies conceived to detect surrogate markers of ICD in vitro and to screen large chemical libraries for putative ICD inducers, based on a high-content, high-throughput platform that we recently developed. Such a platform allows for the detection of multiple DAMPs, like cell surface-exposed calreticulin, extracellular ATP and high mobility group box 1 (HMGB1), and/or the processes that underlie their emission, such as endoplasmic reticulum stress, autophagy and necrotic plasma membrane permeabilization. We surmise that this technology will facilitate the development of next-generation anticancer regimens, which kill malignant cells and simultaneously convert them into a cancer-specific therapeutic vaccine.


Journal of Leukocyte Biology | 2007

The secretion of HMGB1 is required for the migration of maturing dendritic cells

Ingrid E. Dumitriu; Marco Bianchi; Monica Bacci; Angelo A. Manfredi; Patrizia Rovere-Querini

Chemokines regulate the migration and the maturation of dendritic cells (DC) licensed by microbial constituents. We have recently found that the function of DC, including their ability to activate naïve, allogeneic CD4+ T cells, requires the autocrine/pracrine release of the nuclear protein high mobility group box 1 (HMGB1). We show here that human myeloid DC, which rapidly secrete upon maturation induction their own HMGB1, remodel their actin‐based cytoskeleton, up‐regulate the CCR7 and the CXCR4 chemokine receptors, and acquire the ability to migrate in response to chemokine receptor ligands. The events are apparently causally related: DC challenged with LPS in the presence of HMGB1‐specific antibodies fail to up‐regulate the expression of the CCR7 and CXCR4 receptors and to rearrange actin‐rich structures. Moreover, DC matured in the presence of anti‐HMGB1 antibodies fail to migrate in response to the CCR7 ligand CCL19 and to the CXCR4 ligand CXCL12. The blockade of receptor for advanced glycation end products (RAGE), the best‐characterized membrane receptor for HMGB1, impinges as well on the up‐regulation of chemokine receptors and on responsiveness to CCL19 and CXCL12. Our data suggest that the autocrine/paracrine release of HMGB1 and the integrity of the HMGB1/RAGE pathway are required for the migratory function of DC.


European Journal of Immunology | 2005

Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells

Ingrid E. Dumitriu; Paramita Baruah; Marco Bianchi; Angelo A. Manfredi; Patrizia Rovere-Querini

Dendritic cells (DC) are key components of innate and adaptive immune responses. Plasmacytoid DC (PDC) are a specialized DC subset that produce high amounts of type I interferons in response to microbes. High mobility group box 1 protein (HMGB1) is an abundant nuclear protein, which acts as a potent pro‐inflammatory factor when released extracellularly. We show that HMGB1 leaves the nucleus of maturing PDC following TLR9 activation, and that PDC express on the plasma membrane the best‐characterized receptor for HMGB1, RAGE. Maturation and type I IFN secretion of PDC is hindered when the HMGB1/RAGE pathway is disrupted. These results reveal HMGB1 and RAGE as the first known autocrine loop modulating the maturation of PDC, and suggest that antagonists of HMGB1/RAGE might have therapeutic potential for the treatment of systemic human diseases.


Journal of Leukocyte Biology | 2009

Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways.

Karine Lolmede; Lara Campana; Michela Vezzoli; Lidia Bosurgi; Rossana Tonlorenzi; Emilio Clementi; Marco Bianchi; Giulio Cossu; Angelo A. Manfredi; Silvia Brunelli; Patrizia Rovere-Querini

Inflammatory macrophages recruited at the site of damaged muscles progressively acquire an alternative activation profile. Inflammatory (M1) and alternatively activated (M2) macrophages exert various and even opposite functions. M1 cells amplify tissue damage, and M2 cells dispose of necrotic fibers and deliver survival signals to myogenic precursors, finally supporting healing. A critical step in muscle healing is the recruitment of myogenic stem cells, including vessel‐associated stem cells (mesoangioblasts), which have been demonstrated to home to damaged skeletal muscle selectively and preferentially. Little information is available about the signals involved and the role played by infiltrating macrophages. Here, we report that the polarization of macrophages dramatically skews the secretion of high mobility group box 1 (HMGB1), TNF‐α, vascular endothelial growth factor, and metalloproteinase 9 (MMP‐9), molecules involved in the regulation of cell diapedesis and migration. All polarized macrophage populations were strikingly effective at inducing mesoangioblast migration. By means of specific inhibitors, we verified that the recruitment of mesoangioblasts requires the secretion of HMGB1 and TNF‐α by M1 cells and of MMP‐9 by M2 cells. Together, these data demonstrate a feature, unrecognized previously, of macrophages: their ability to attract stem cells, which is conserved throughout their polarization. Moreover, they open the possibility of novel strategies, aimed at interfering selectively with signals that recruit blood‐derived stem cells toward pro‐ or anti‐inflammatory macrophages.


Journal of Experimental Medicine | 2004

Inhibition of Phosphatidylserine Recognition Heightens the Immunogenicity of Irradiated Lymphoma Cells In Vivo

Attilio Bondanza; Valérie S. Zimmermann; Patrizia Rovere-Querini; Javier Turnay; Ingrid E. Dumitriu; Christian Stach; Reinhard E. Voll; Udo S. Gaipl; Wolf Bertling; Ernst Pöschl; Joachim R. Kalden; Angelo A. Manfredi; Martin Herrmann

Strategies to enhance the immunogenicity of tumors are urgently needed. Although vaccination with irradiated dying lymphoma cells recruits a tumor-specific immune response, its efficiency as immunogen is poor. Annexin V (AxV) binds with high affinity to phosphatidylserine on the surface of apoptotic and necrotic cells and thereby impairs their uptake by macrophages. Here, we report that AxV preferentially targets irradiated lymphoma cells to CD8+ dendritic cells for in vivo clearance, elicits the release of proinflammatory cytokines and dramatically enhances the protection elicited against the tumor. The response was endowed with both memory, because protected animals rejected living lymphoma cells after 72 d, and specificity, because vaccinated animals failed to reject unrelated neoplasms. Finally, AxV–coupled irradiated cells induced the regression of growing tumors. These data indicate that endogenous adjuvants that bind to dying tumor cells can be exploited to target tumors for immune rejection.


American Journal of Pathology | 2009

Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease.

Monica Bacci; Annalisa Capobianco; Antonella Monno; Lucia Cottone; Francesca Di Puppo; Barbara Camisa; Margherita Mariani; Chiara Brignole; Mirco Ponzoni; Stefano Ferrari; Paola Panina-Bordignon; Angelo A. Manfredi; Patrizia Rovere-Querini

The mechanisms that sustain endometrial tissues at ectopic sites in patients with endometriosis are poorly understood. Various leukocytes, including macrophages, infiltrate endometriotic lesions. In this study, we depleted mouse macrophages by means of either clodronate liposomes or monoclonal antibodies before the injection of syngeneic endometrial tissue. In the absence of macrophages, tissue fragments adhered and implanted into the peritoneal wall, but endometriotic lesions failed to organize and develop. When we depleted macrophages after the establishment of endometriotic lesions, blood vessels failed to reach the inner layers of the lesions, which stopped growing. Macrophages from patients with endometriosis and experimental mice, but not nonendometriotic patients who underwent surgery for uterine leiomyomas or control mice, expressed markers of alternative activation. These markers included high levels of scavenger receptors, CD163 and CD206, which are involved in both the scavenging of hemoglobin with iron transfer into macrophages and the silent clearance of inflammatory molecules. Macrophages in both inflammatory liquid and ectopic lesions were equally polarized, suggesting a critical role of environmental cues in the peritoneal cavity. Adoptively transferred, alternatively activated macrophages dramatically enhanced endometriotic lesion growth in mice. Inflammatory macrophages effectively protected mice from endometriosis. Therefore, endogenous macrophages involved in tissue remodeling appear as players in the natural history of endometriosis, required for effective vascularization and ectopic lesion growth.


Haematologica | 2010

Polarization dictates iron handling by inflammatory and alternatively activated macrophages

Gianfranca Corna; Lara Campana; Emanuele Pignatti; Alessandra Castiglioni; Enrico Tagliafico; Lidia Bosurgi; Alessandro Campanella; Silvia Brunelli; Angelo A. Manfredi; Pietro Apostoli; Laura Silvestri; Clara Camaschella; Patrizia Rovere-Querini

Background Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and Methods Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. Results M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize – albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. Conclusions Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with the ability to recycle the metal (M2).

Collaboration


Dive into the Patrizia Rovere-Querini's collaboration.

Top Co-Authors

Avatar

Angelo A. Manfredi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Maria Grazia Sabbadini

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Norma Maugeri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Annalisa Capobianco

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Giuseppe A. Ramirez

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Antonella Monno

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Marco Bianchi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Valentina Canti

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lara Campana

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge