Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patty Wai is active.

Publication


Featured researches published by Patty Wai.


The Journal of Pathology | 2014

Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast

Rachael Natrajan; Paul M. Wilkerson; Caterina Marchiò; Salvatore Piscuoglio; Charlotte K.Y. Ng; Patty Wai; Maryou B. Lambros; Eleftherios P. Samartzis; Konstantin J. Dedes; Jessica Frankum; Ilirjana Bajrami; Alicja Kopec; Alan Mackay; Roger A'Hern; Kerry Fenwick; Iwanka Kozarewa; Jarle Hakas; Costas Mitsopoulos; David Hardisson; Christopher J. Lord; Chandan Kumar-Sinha; Alan Ashworth; Britta Weigelt; Anna Sapino; Arul M. Chinnaiyan; Christopher A. Maher; Jorge S. Reis-Filho

Micropapillary carcinoma (MPC) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations (CNAs) distinct from that of grade‐ and oestrogen receptor (ER)‐matched invasive carcinomas of no special type (IC‐NSTs). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray‐based comparative genomic hybridization (aCGH) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs. Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC‐NSTs, and recurrent mutations affecting mitogen‐activated protein kinase family genes and NBPF10. RNA‐sequencing analysis identified 17 high‐confidence fusion genes, eight of which were validated and two of which were in‐frame. No recurrent fusions were identified in an independent series of MPCs and IC‐NSTs. Forced expression of in‐frame fusion genes (SLC2A1–FAF1 and BCAS4–AURKA) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out‐of‐frame rearrangements was found in one MPC and in 13% of HER2‐positive breast cancers, identified through a re‐analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild‐type CDK12 in a CDK12‐null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities.


The Journal of Pathology | 2015

SF3B1 mutations constitute a novel therapeutic target in breast cancer

Sarah Maguire; Andri Leonidou; Patty Wai; Caterina Marchiò; Charlotte K.Y. Ng; Anna Sapino; Anne Vincent Salomon; Jorge S. Reis-Filho; Britta Weigelt; Rachael Natrajan

Mutations in genes encoding proteins involved in RNA splicing have been found to occur at relatively high frequencies in several tumour types including myelodysplastic syndromes, chronic lymphocytic leukaemia, uveal melanoma, and pancreatic cancer, and at lower frequencies in breast cancer. To investigate whether dysfunction in RNA splicing is implicated in the pathogenesis of breast cancer, we performed a re‐analysis of published exome and whole genome sequencing data. This analysis revealed that mutations in spliceosomal component genes occurred in 5.6% of unselected breast cancers, including hotspot mutations in the SF3B1 gene, which were found in 1.8% of unselected breast cancers. SF3B1 mutations were significantly associated with ER‐positive disease, AKT1 mutations, and distinct copy number alterations. Additional profiling of hotspot mutations in a panel of special histological subtypes of breast cancer showed that 16% and 6% of papillary and mucinous carcinomas of the breast harboured the SF3B1 K700E mutation. RNA sequencing identified differentially spliced events expressed in tumours with SF3B1 mutations including the protein coding genes TMEM14C, RPL31, DYNL11, UQCC, and ABCC5, and the long non‐coding RNA CRNDE. Moreover, SF3B1 mutant cell lines were found to be sensitive to the SF3b complex inhibitor spliceostatin A and treatment resulted in perturbation of the splicing signature. Albeit rare, SF3B1 mutations result in alternative splicing events, and may constitute drivers and a novel therapeutic target in a subset of breast cancers.


Genome Biology | 2015

Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification

Charlotte K.Y. Ng; Luciano G. Martelotto; Arnaud Gauthier; Huei-Chi Wen; Salvatore Piscuoglio; Raymond S. Lim; Catherine F. Cowell; Paul M. Wilkerson; Patty Wai; Daniel Nava Rodrigues; Laurent Arnould; Felipe C. Geyer; Silvio E Bromberg; Magali Lacroix-Triki; Frédérique Penault-Llorca; Sylvia Giard; Xavier Sastre-Garau; Rachael Natrajan; Larry Norton; Paul Cottu; Britta Weigelt; Anne Vincent-Salomon; Jorge S. Reis-Filho

BackgroundHER2 is overexpressed and amplified in approximately 15% of invasive breast cancers, and is the molecular target and predictive marker of response to anti-HER2 agents. In a subset of these cases, heterogeneous distribution of HER2 gene amplification can be found, which creates clinically challenging scenarios. Currently, breast cancers with HER2 amplification/overexpression in just over 10% of cancer cells are considered HER2-positive for clinical purposes; however, it is unclear as to whether the HER2-negative components of such tumors would be driven by distinct genetic alterations. Here we sought to characterize the pathologic and genetic features of the HER2-positive and HER2-negative components of breast cancers with heterogeneous HER2 gene amplification and to define the repertoire of potential driver genetic alterations in the HER2-negative components of these cases.ResultsWe separately analyzed the HER2-negative and HER2-positive components of 12 HER2 heterogeneous breast cancers using gene copy number profiling and massively parallel sequencing, and identified potential driver genetic alterations restricted to the HER2-negative cells in each case. In vitro experiments provided functional evidence to suggest that BRF2 and DSN1 overexpression/amplification, and the HER2 I767M mutation may be alterations that compensate for the lack of HER2 amplification in the HER2-negative components of HER2 heterogeneous breast cancers.ConclusionsOur results indicate that even driver genetic alterations, such as HER2 gene amplification, can be heterogeneously distributed within a cancer, and that the HER2-negative components are likely driven by genetic alterations not present in the HER2-positive components, including BRF2 and DSN1 amplification and HER2 somatic mutations.


The Journal of Pathology | 2012

A whole-genome massively parallel sequencing analysis of BRCA1 mutant oestrogen receptor-negative and -positive breast cancers

Rachael Natrajan; Alan Mackay; Maryou B. Lambros; Britta Weigelt; Paul M. Wilkerson; Elodie Manié; Anita Grigoriadis; Roger A'Hern; Petra van der Groep; Iwanka Kozarewa; Tatiana Popova; Odette Mariani; Samra Turajlic; Simon J. Furney; Richard Marais; Daniel-Nava Rodruigues; Adriana C Flora; Patty Wai; Vidya Pawar; Simon S. McDade; Jason S. Carroll; Dominique Stoppa-Lyonnet; Andrew R. Green; Ian O. Ellis; Charles Swanton; Paul J. van Diest; Olivier Delattre; Christopher J. Lord; William D. Foulkes; Anne Vincent-Salomon

BRCA1 encodes a tumour suppressor protein that plays pivotal roles in homologous recombination (HR) DNA repair, cell‐cycle checkpoints, and transcriptional regulation. BRCA1 germline mutations confer a high risk of early‐onset breast and ovarian cancer. In more than 80% of cases, tumours arising in BRCA1 germline mutation carriers are oestrogen receptor (ER)‐negative; however, up to 15% are ER‐positive. It has been suggested that BRCA1 ER‐positive breast cancers constitute sporadic cancers arising in the context of a BRCA1 germline mutation rather than being causally related to BRCA1 loss‐of‐function. Whole‐genome massively parallel sequencing of ER‐positive and ER‐negative BRCA1 breast cancers, and their respective germline DNAs, was used to characterize the genetic landscape of BRCA1 cancers at base‐pair resolution. Only BRCA1 germline mutations, somatic loss of the wild‐type allele, and TP53 somatic mutations were recurrently found in the index cases. BRCA1 breast cancers displayed a mutational signature consistent with that caused by lack of HR DNA repair in both ER‐positive and ER‐negative cases. Sequencing analysis of independent cohorts of hereditary BRCA1 and sporadic non‐BRCA1 breast cancers for the presence of recurrent pathogenic mutations and/or homozygous deletions found in the index cases revealed that DAPK3, TMEM135, KIAA1797, PDE4D, and GATA4 are potential additional drivers of breast cancers. This study demonstrates that BRCA1 pathogenic germline mutations coupled with somatic loss of the wild‐type allele are not sufficient for hereditary breast cancers to display an ER‐negative phenotype, and has led to the identification of three potential novel breast cancer genes (ie DAPK3, TMEM135, and GATA4). Copyright


Cell Reports | 2016

Dual Targeting of PDGFRα and FGFR1 Displays Synergistic Efficacy in Malignant Rhabdoid Tumors

Jocelyn P. Wong; Jason R. Todd; Martina Finetti; Frank McCarthy; Malgorzata Broncel; Simon Vyse; Maciej T. Luczynski; Stephen Crosier; Karen A. Ryall; Kate Holmes; Leo S. Payne; Frances Daley; Patty Wai; Andrew Jenks; Barbara E. Tanos; Aik Choon Tan; Rachael Natrajan; Daniel Williamson; Paul H. Huang

Summary Subunits of the SWI/SNF chromatin remodeling complex are mutated in a significant proportion of human cancers. Malignant rhabdoid tumors (MRTs) are lethal pediatric cancers characterized by a deficiency in the SWI/SNF subunit SMARCB1. Here, we employ an integrated molecular profiling and chemical biology approach to demonstrate that the receptor tyrosine kinases (RTKs) PDGFRα and FGFR1 are coactivated in MRT cells and that dual blockade of these receptors has synergistic efficacy. Inhibitor combinations targeting both receptors and the dual inhibitor ponatinib suppress the AKT and ERK1/2 pathways leading to apoptosis. MRT cells that have acquired resistance to the PDGFRα inhibitor pazopanib are susceptible to FGFR inhibitors. We show that PDGFRα levels are regulated by SMARCB1 expression, and assessment of clinical specimens documents the expression of both PDGFRα and FGFR1 in rhabdoid tumor patients. Our findings support a therapeutic approach in cancers with SWI/SNF deficiencies by exploiting RTK coactivation dependencies.


Biochemical Journal | 2016

Comparative proteomic assessment of matrisome enrichment methodologies

Lukas Krasny; Angela Paul; Patty Wai; Beatrice A. Howard; Rachael Natrajan; Paul H. Huang

The matrisome is a complex and heterogeneous collection of extracellular matrix (ECM) and ECM-associated proteins that play important roles in tissue development and homeostasis. While several strategies for matrisome enrichment have been developed, it is currently unknown how the performance of these different methodologies compares in the proteomic identification of matrisome components across multiple tissue types. In the present study, we perform a comparative proteomic assessment of two widely used decellularisation protocols and two extraction methods to characterise the matrisome in four murine organs (heart, mammary gland, lung and liver). We undertook a systematic evaluation of the performance of the individual methods on protein yield, matrisome enrichment capability and the ability to isolate core matrisome and matrisome-associated components. Our data find that sodium dodecyl sulphate (SDS) decellularisation leads to the highest matrisome enrichment efficiency, while the extraction protocol that comprises chemical and trypsin digestion of the ECM fraction consistently identifies the highest number of matrisomal proteins across all types of tissue examined. Matrisome enrichment had a clear benefit over non-enriched tissue for the comprehensive identification of matrisomal components in murine liver and heart. Strikingly, we find that all four matrisome enrichment methods led to significant losses in the soluble matrisome-associated proteins across all organs. Our findings highlight the multiple factors (including tissue type, matrisome class of interest and desired enrichment purity) that influence the choice of enrichment methodology, and we anticipate that these data will serve as a useful guide for the design of future proteomic studies of the matrisome.


Journal of Proteomics | 2018

SWATH mass spectrometry as a tool for quantitative profiling of the matrisome

Lukas Krasny; Philip Bland; Naoko Kogata; Patty Wai; Beatrice A. Howard; Rachael Natrajan; Paul H. Huang

Proteomic analysis of extracellular matrix (ECM) and ECM-associated proteins, collectively known as the matrisome, is a challenging task due to the inherent complexity and insolubility of these proteins. Here we present sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH MS) as a tool for the quantitative analysis of matrisomal proteins in both non-enriched and ECM enriched tissue without the need for prior fractionation. Utilising a spectral library containing 201 matrisomal proteins, we compared the performance and reproducibility of SWATH MS over conventional data-dependent analysis mass spectrometry (DDA MS) in unfractionated murine lung and liver. SWATH MS conferred a 15–20% increase in reproducible peptide identification across replicate experiments in both tissue types and identified 54% more matrisomal proteins in the liver versus DDA MS. We further use SWATH MS to evaluate the quantitative changes in matrisome content that accompanies ECM enrichment. Our data shows that ECM enrichment led to a systematic increase in core matrisomal proteins but resulted in significant losses in matrisome-associated proteins including the cathepsins and proteins of the S100 family. Our proof-of-principle study demonstrates the utility of SWATH MS as a versatile tool for in-depth characterisation of the matrisome in unfractionated and non-enriched tissues. Significance The matrisome is a complex network of extracellular matrix (ECM) and ECM-associated proteins that provides scaffolding function to tissues and plays important roles in the regulation of fundamental cellular processes. However, due to its inherent complexity and insolubility, proteomic studies of the matrisome typically require the application of enrichment workflows prior to MS analysis. Such enrichment strategies often lead to losses in soluble matrisome-associated components. In this study, we present sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH MS) as a tool for the quantitative analysis of matrisomal proteins. We show that SWATH MS provides a more reproducible coverage of the matrisome compared to data-dependent analysis (DDA) MS. We also demonstrate that SWATH MS is capable of accurate quantification of matrisomal proteins without prior ECM enrichment and fractionation, which may simplify sample handling workflows and avoid losses in matrisome-associated proteins commonly linked to ECM enrichment.


The Journal of Pathology | 2016

Three-dimensional modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model

Sarah Maguire; Barrie Peck; Patty Wai; James J. Campbell; Holly E. Barker; Aditi Gulati; Frances Daley; Simon Vyse; Paul H. Huang; Christopher J. Lord; Gillian Farnie; Keith Brennan; Rachael Natrajan

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three‐dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non‐malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1–HRAS and UBA2–PDCD2L expressed in‐frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer‐relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer.


Molecular Cancer Therapeutics | 2018

Evaluation of CDK12 Protein Expression as a Potential Novel Biomarker for DNA Damage Response Targeted Therapies in Breast Cancer

Kalnisha Naidoo; Patty Wai; Sarah Maguire; Frances Daley; Syed Haider; Divya Kriplani; James F. Campbell; Hasan Mirza; Anita Grigoriadis; Andrew Tutt; Paul Moseley; Tarek M. A. Abdel-Fatah; Stephen Chan; Srinivasan Madhusudan; Emad A. Rhaka; Ian O. Ellis; Christopher J. Lord; Yinyin Yuan; Andrew R. Green; Rachael Natrajan

Disruption of Cyclin-Dependent Kinase 12 (CDK12) is known to lead to defects in DNA repair and sensitivity to platinum salts and PARP1/2 inhibitors. However, CDK12 has also been proposed as an oncogene in breast cancer. We therefore aimed to assess the frequency and distribution of CDK12 protein expression by IHC in independent cohorts of breast cancer and correlate this with outcome and genomic status. We found that 21% of primary unselected breast cancers were CDK12 high, and 10.5% were absent, by IHC. CDK12 positivity correlated with HER2 positivity but was not an independent predictor of breast cancer–specific survival taking HER2 status into account; however, absent CDK12 protein expression significantly correlated with a triple-negative phenotype. Interestingly, CDK12 protein absence was associated with reduced expression of a number of DDR proteins including ATR, Ku70/Ku80, PARP1, DNA-PK, and γH2AX, suggesting a novel mechanism of CDK12-associated DDR dysregulation in breast cancer. Our data suggest that diagnostic IHC quantification of CDK12 in breast cancer is feasible, with CDK12 absence possibly signifying defective DDR function. This may have important therapeutic implications, particularly for triple-negative breast cancers. Mol Cancer Ther; 17(1); 306–15. ©2017 AACR.


The Journal of Pathology | 2016

3D modelling identifies novel genetic dependencies associated with breast cancer progression in the isogenic MCF10 model.

Sarah Maguire; Barrie Peck; Patty Wai; James J. Campbell; Holly E. Barker; Aditi Gulati; Frances Daley; Simon Vyse; Paul H. Huang; Christopher J. Lord; Gillian Farnie; Keith Brennan; Rachael Natrajan

The initiation and progression of breast cancer from the transformation of the normal epithelium to ductal carcinoma in situ (DCIS) and invasive disease is a complex process involving the acquisition of genetic alterations and changes in gene expression, alongside microenvironmental and recognized histological alterations. Here, we sought to comprehensively characterise the genomic and transcriptomic features of the MCF10 isogenic model of breast cancer progression, and to functionally validate potential driver alterations in three‐dimensional (3D) spheroids that may provide insights into breast cancer progression, and identify targetable alterations in conditions more similar to those encountered in vivo. We performed whole genome, exome and RNA sequencing of the MCF10 progression series to catalogue the copy number and mutational and transcriptomic landscapes associated with progression. We identified a number of predicted driver mutations (including PIK3CA and TP53) that were acquired during transformation of non‐malignant MCF10A cells to their malignant counterparts that are also present in analysed primary breast cancers from The Cancer Genome Atlas (TCGA). Acquisition of genomic alterations identified MYC amplification and previously undescribed RAB3GAP1–HRAS and UBA2–PDCD2L expressed in‐frame fusion genes in malignant cells. Comparison of pathway aberrations associated with progression showed that, when cells are grown as 3D spheroids, they show perturbations of cancer‐relevant pathways. Functional interrogation of the dependency on predicted driver events identified alterations in HRAS, PIK3CA and TP53 that selectively decreased cell growth and were associated with progression from preinvasive to invasive disease only when cells were grown as spheroids. Our results have identified changes in the genomic repertoire in cell lines representative of the stages of breast cancer progression, and demonstrate that genetic dependencies can be uncovered when cells are grown in conditions more like those in vivo. The MCF10 progression series therefore represents a good model with which to dissect potential biomarkers and to evaluate therapeutic targets involved in the progression of breast cancer.

Collaboration


Dive into the Patty Wai's collaboration.

Top Co-Authors

Avatar

Rachael Natrajan

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Christopher J. Lord

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Sarah Maguire

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Frances Daley

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Andri Leonidou

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul H. Huang

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Britta Weigelt

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jorge S. Reis-Filho

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge