Pau Figueras
Durham University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Pau Figueras.
Physical Review D | 2009
Oscar J. C. Dias; Pau Figueras; Ricardo Monteiro; Jorge E. Santos; Roberto Emparan
It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically and find the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.
Physical Review D | 2008
Pau Figueras; Hari K. Kunduri; James Lucietti; Mukund Rangamani
We consider extremal black hole solutions to the vacuum Einstein equations in dimensions greater than five. We prove that the near-horizon geometry of any such black hole must possess an SO(2,1) symmetry in a special case where one has an enhanced rotational symmetry group. We construct examples of vacuum near-horizon geometries using the extremal Myers-Perry black holes and boosted Myers-Perry strings. The latter lead to near-horizon geometries of black ring topology, which in odd spacetime dimensions have the correct number rotational symmetries to describe an asymptotically flat black object. We argue that a subset of these correspond to the near-horizon limit of asymptotically flat extremal black rings. Using this identification we provide a conjecture for the exact “phase diagram” of extremal vacuum black rings with a connected horizon in odd spacetime dimensions greater than five.
Journal of High Energy Physics | 2010
Oscar J. C. Dias; Pau Figueras; Ricardo Monteiro; Harvey S. Reall; Jorge E. Santos
We present the first example of a linearized gravitational instability of an asymptotically at vacuum black hole. We study perturbations of a Myers-Perry black hole with equal angular momenta in an odd number of dimensions. We find no evidence of any instability in five or seven dimensions, but in nine dimensions, for sufficiently rapid rotation, we find perturbations that grow exponentially in time. The onset of instability is associated with the appearance of time-independent perturbations which generically break all but one of the rotational symmetries. This is interpreted as evidence for the existence of a new 70-parameter family of black hole solutions with only a single rotational symmetry. We also present results for the Gregory-Laflamme instability of rotating black strings, demonstrating that rotation makes black strings more unstable.
Classical and Quantum Gravity | 2011
Pau Figueras; James Lucietti; Toby Wiseman
The elliptic Einstein–DeTurck equation may be used to numerically find Einstein metrics on Riemannian manifolds. Static Lorentzian Einstein metrics are considered by analytically continuing to Euclidean time. The Ricci–DeTurck flow is a constructive algorithm to solve this equation, and is simple to implement when the solution is a stable fixed point, the only complication being that Ricci solitons may exist which are not Einstein. Here we extend previous work to consider the Einstein–DeTurck equation for Riemannian manifolds with boundaries, and those that continue to static Lorentzian spacetimes which are asymptotically flat, Kaluza–Klein, locally AdS or have extremal horizons. Using a maximum principle, we prove that Ricci solitons do not exist in these cases and so any solution is Einstein. We also argue that the Ricci–DeTurck flow preserves these classes of manifolds. As an example, we simulate the Ricci–DeTurck flow for a manifold with asymptotics relevant for AdS5/CFT4. Our maximum principle dictates that there are no soliton solutions, and we give strong numerical evidence that there exists a stable fixed point of the flow which continues to a smooth static Lorentzian Einstein metric. Our asymptotics are such that this describes the classical gravity dual relevant for the CFT on a Schwarzschild background in either the Unruh or Boulware vacua. It determines the leading O(N2c) part of the CFT stress tensor, which interestingly is regular on both the future and past Schwarzschild horizons.
Journal of High Energy Physics | 2005
Henriette Elvang; Roberto Emparan; Pau Figueras
We construct a seven-parameter family of supergravity solutions that describe non-supersymmetric black rings and black tubes with three charges, three dipoles and two angular momenta. The black rings have regular horizons and non-zero temperature. They are naturally interpreted as the supergravity descriptions of thermally excited configurations of supertubes, specifically of supertubes with two charges and one dipole, and of supertubes with three charges and two dipoles. In order to fully describe thermal excitations near supersymmetry of the black supertubes with three charges and three dipoles a more general family of black ring solutions is required.
Journal of High Energy Physics | 2009
Pau Figueras; Veronika E. Hubeny; Mukund Rangamani; Simon F. Ross
We analyse the global structure of time-dependent geometries dual to expanding plasmas, considering two examples: the boost invariant Bjorken flow, and the conformal soliton flow. While the geometry dual to the Bjorken flow is constructed in a perturbation expansion at late proper time, the conformal soliton flow has an exact dual (which corresponds to a Poincare patch of Schwarzschild-AdS). In particular, we discuss the position and area of event and apparent horizons in the two geometries. The conformal soliton geometry offers a sharp distinction between event and apparent horizon; whereas the area of the event horizon diverges, that of the apparent horizon stays finite and constant. This suggests that the entropy of the corresponding CFT state is related to the apparent horizon rather than the event horizon.
Physical Review D | 2010
Oscar J. C. Dias; Pau Figueras; Ricardo Monteiro; Jorge E. Santos
Rapidly rotating Myers-Perry black holes in d{>=}6 dimensions were conjectured to be unstable by Emparan and Myers. In a previous publication, we found numerically the onset of the axisymmetric ultraspinning instability in the singly spinning Myers-Perry black hole in d=7, 8, 9. This threshold also signals a bifurcation to new branches of axisymmetric solutions with pinched horizons that are conjectured to connect to the black ring, black Saturn and other families in the phase diagram of stationary solutions. We firmly establish that this instability is also present in d=6 and in d=10, 11. The boundary conditions of the perturbations are discussed in detail for the first time, and we prove that they preserve the angular velocity and temperature of the original Myers-Perry black hole. This property is fundamental to establishing a thermodynamic necessary condition for the existence of this instability in general rotating backgrounds. We also prove a previous claim that the ultraspinning modes cannot be pure gauge modes. Finally we find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes that appear exactly at the critical rotation predicted by the aforementioned thermodynamic criterium. The latter is a refinement of the Gubser-Mitra conjecture.
Physical Review Letters | 2011
Pau Figueras; Toby Wiseman
We show how to construct low energy solutions to the Randall-Sundrum II (RSII) model by using an associated five-dimensional anti-de Sitter space (AdS(5)) and/or four-dimensional conformal field theory (CFT(4)) problem. The RSII solution is given as a perturbation of the AdS(5)-CFT(4) solution, with the perturbation parameter being the radius of curvature of the brane metric compared to the AdS length ℓ. The brane metric is then a specific perturbation of the AdS(5)-CFT(4) boundary metric. For low curvatures the RSII solution reproduces 4D general relativity on the brane. Recently, AdS(5)-CFT(4) solutions with a 4D Schwarzschild boundary metric were numerically constructed. We modify the boundary conditions to numerically construct large RSII static black holes with radius up to ~20ℓ. For a large radius, the RSII solutions are indeed close to the associated AdS(5)-CFT(4) solution.
Journal of High Energy Physics | 2009
Joan Camps; Roberto Emparan; Pau Figueras; Stefano Giusto; Ashish Saxena
We analyze the dynamics of neutral black rings in Taub-NUT spaces and their relation to systems of D0 and D6 branes in the supergravity approximation. We employ several recent techniques, both perturbative and exact, to construct solutions in which thermal excitations of the D0-branes can be turned on or off, and the D6-brane can have B-fluxes turned on or off in its worldvolume. By explicit calculation of the interaction energy between the D0 and D6 branes, we can study equilibrium configurations and their stability. We find that although D0 and D6 branes (in the absence of B fields, and at zero temperature) repeal each other at non-zero separation, as they get together they go over continuosly to an unstable bound state of an extremal singular Kaluza-Klein black hole. We also find that, for B-fields larger than a critical value, or sufficiently large thermal excitation, the D0 and D6 branes form stable bound states. The bound states with thermally excited D0 branes are black rings in Taub-NUT, and we provide an analysis of their phase diagram.
Journal of High Energy Physics | 2012
Oscar J. C. Dias; Pau Figueras; Shiraz Minwalla; Prahar Mitra; Ricardo Monteiro; Jorge E. Santos
A bstractWe use a mix of analytic and numerical methods to exhaustively study a class of asymptotically global AdS solitons and hairy black hole solutions in negative cosmological constant Einstein Maxwell gravity coupled to a charged massless scalar field. Our results depend sensitively on the charge e of the scalar field. The solitonic branch of solutions we study hits the Chandrashekhar limit at finite mass at small e, but extends to arbitrarily large mass at larger e. At low values of e no hairy black holes exist. At intermediate values of e hairy black holes exist above a critical charge. At large e hairy black holes exist at all values of the charge. The lowest mass hairy black hole is a smooth zero entropy soliton at small charge, but a (probably) singular nonzero entropy hairy black hole at larger charge. In a phase diagram of solutions, the hairy black holes merge with the familiar Reissner-Nordström−AdS black holes along a curve that is determined by the onset of the superradiant instability in the latter family.