Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pau Navarro is active.

Publication


Featured researches published by Pau Navarro.


PLOS Genetics | 2014

A General Approach for Haplotype Phasing across the Full Spectrum of Relatedness

Jared O'Connell; Deepti Gurdasani; Olivier Delaneau; Nicola Pirastu; Sheila Ulivi; Massimiliano Cocca; Michela Traglia; Jie Huang; Jennifer E. Huffman; Igor Rudan; Ruth McQuillan; Ross M. Fraser; Harry Campbell; Ozren Polasek; Gershim Asiki; Kenneth Ekoru; Caroline Hayward; Alan F. Wright; Veronique Vitart; Pau Navarro; Jean-François Zagury; James F. Wilson; Daniela Toniolo; Paolo Gasparini; Nicole Soranzo; Manjinder S. Sandhu; Jonathan Marchini

Many existing cohorts contain a range of relatedness between genotyped individuals, either by design or by chance. Haplotype estimation in such cohorts is a central step in many downstream analyses. Using genotypes from six cohorts from isolated populations and two cohorts from non-isolated populations, we have investigated the performance of different phasing methods designed for nominally ‘unrelated’ individuals. We find that SHAPEIT2 produces much lower switch error rates in all cohorts compared to other methods, including those designed specifically for isolated populations. In particular, when large amounts of IBD sharing is present, SHAPEIT2 infers close to perfect haplotypes. Based on these results we have developed a general strategy for phasing cohorts with any level of implicit or explicit relatedness between individuals. First SHAPEIT2 is run ignoring all explicit family information. We then apply a novel HMM method (duoHMM) to combine the SHAPEIT2 haplotypes with any family information to infer the inheritance pattern of each meiosis at all sites across each chromosome. This allows the correction of switch errors, detection of recombination events and genotyping errors. We show that the method detects numbers of recombination events that align very well with expectations based on genetic maps, and that it infers far fewer spurious recombination events than Merlin. The method can also detect genotyping errors and infer recombination events in otherwise uninformative families, such as trios and duos. The detected recombination events can be used in association scans for recombination phenotypes. The method provides a simple and unified approach to haplotype estimation, that will be of interest to researchers in the fields of human, animal and plant genetics.


PLOS Genetics | 2012

Stratifying Type 2 Diabetes Cases by BMI Identifies Genetic Risk Variants in LAMA1 and Enrichment for Risk Variants in Lean Compared to Obese Cases

John Perry; Benjamin F. Voight; Loı̈c Yengo; Najaf Amin; Josée Dupuis; Martha Ganser; Harald Grallert; Pau Navarro; Man Li; Lu Qi; Valgerdur Steinthorsdottir; Robert A. Scott; Peter Almgren; Dan E. Arking; Yurii S. Aulchenko; Beverley Balkau; Rafn Benediktsson; Richard N. Bergman; Eric Boerwinkle; Lori L. Bonnycastle; Noël P. Burtt; Harry Campbell; Guillaume Charpentier; Francis S. Collins; Christian Gieger; Todd Green; Samy Hadjadj; Andrew T. Hattersley; Christian Herder; Albert Hofman

Common diseases such as type 2 diabetes are phenotypically heterogeneous. Obesity is a major risk factor for type 2 diabetes, but patients vary appreciably in body mass index. We hypothesized that the genetic predisposition to the disease may be different in lean (BMI<25 Kg/m2) compared to obese cases (BMI≥30 Kg/m2). We performed two case-control genome-wide studies using two accepted cut-offs for defining individuals as overweight or obese. We used 2,112 lean type 2 diabetes cases (BMI<25 kg/m2) or 4,123 obese cases (BMI≥30 kg/m2), and 54,412 un-stratified controls. Replication was performed in 2,881 lean cases or 8,702 obese cases, and 18,957 un-stratified controls. To assess the effects of known signals, we tested the individual and combined effects of SNPs representing 36 type 2 diabetes loci. After combining data from discovery and replication datasets, we identified two signals not previously reported in Europeans. A variant (rs8090011) in the LAMA1 gene was associated with type 2 diabetes in lean cases (P = 8.4×10−9, OR = 1.13 [95% CI 1.09–1.18]), and this association was stronger than that in obese cases (P = 0.04, OR = 1.03 [95% CI 1.00–1.06]). A variant in HMG20A—previously identified in South Asians but not Europeans—was associated with type 2 diabetes in obese cases (P = 1.3×10−8, OR = 1.11 [95% CI 1.07–1.15]), although this association was not significantly stronger than that in lean cases (P = 0.02, OR = 1.09 [95% CI 1.02–1.17]). For 36 known type 2 diabetes loci, 29 had a larger odds ratio in the lean compared to obese (binomial P = 0.0002). In the lean analysis, we observed a weighted per-risk allele OR = 1.13 [95% CI 1.10–1.17], P = 3.2×10−14. This was larger than the same model fitted in the obese analysis where the OR = 1.06 [95% CI 1.05–1.08], P = 2.2×10−16. This study provides evidence that stratification of type 2 diabetes cases by BMI may help identify additional risk variants and that lean cases may have a stronger genetic predisposition to type 2 diabetes.


Human Molecular Genetics | 2010

Genome-wide association analysis identifies multiple loci related to resting heart rate

Mark Eijgelsheim; Christopher Newton-Cheh; Nona Sotoodehnia; Paul I. W. de Bakker; Martina Müller; Alanna C. Morrison; Albert V. Smith; Aaron Isaacs; Serena Sanna; Marcus Dörr; Pau Navarro; Christian Fuchsberger; Ilja M. Nolte; Eco J. C. de Geus; Karol Estrada; Shih-Jen Hwang; Joshua C. Bis; Ina-Maria Rückert; Alvaro Alonso; Lenore J. Launer; Jouke-Jan Hottenga; Fernando Rivadeneira; Peter A. Noseworthy; Kenneth Rice; Siegfried Perz; Dan E. Arking; Tim D. Spector; Jan A. Kors; Yurii S. Aulchenko; Kirill V. Tarasov

Higher resting heart rate is associated with increased cardiovascular disease and mortality risk. Though heritable factors play a substantial role in population variation, little is known about specific genetic determinants. This knowledge can impact clinical care by identifying novel factors that influence pathologic heart rate states, modulate heart rate through cardiac structure and function or by improving our understanding of the physiology of heart rate regulation. To identify common genetic variants associated with heart rate, we performed a meta-analysis of 15 genome-wide association studies (GWAS), including 38,991 subjects of European ancestry, estimating the association between age-, sex- and body mass-adjusted RR interval (inverse heart rate) and approximately 2.5 million markers. Results with P < 5 × 10(-8) were considered genome-wide significant. We constructed regression models with multiple markers to assess whether results at less stringent thresholds were likely to be truly associated with RR interval. We identified six novel associations with resting heart rate at six loci: 6q22 near GJA1; 14q12 near MYH7; 12p12 near SOX5, c12orf67, BCAT1, LRMP and CASC1; 6q22 near SLC35F1, PLN and c6orf204; 7q22 near SLC12A9 and UfSp1; and 11q12 near FADS1. Associations at 6q22 400 kb away from GJA1, at 14q12 MYH6 and at 1q32 near CD34 identified in previously published GWAS were confirmed. In aggregate, these variants explain approximately 0.7% of RR interval variance. A multivariant regression model including 20 variants with P < 10(-5) increased the explained variance to 1.6%, suggesting that some loci falling short of genome-wide significance are likely truly associated. Future research is warranted to elucidate underlying mechanisms that may impact clinical care.


Scientific Reports | 2015

Application of high-dimensional feature selection: evaluation for genomic prediction in man

Mairead Lesley Bermingham; Ricardo Pong-Wong; Athina Spiliopoulou; Caroline Hayward; Igor Rudan; Harry Campbell; Alan F. Wright; James F. Wilson; Felix Agakov; Pau Navarro; Chris Haley

In this study, we investigated the effect of five feature selection approaches on the performance of a mixed model (G-BLUP) and a Bayesian (Bayes C) prediction method. We predicted height, high density lipoprotein cholesterol (HDL) and body mass index (BMI) within 2,186 Croatian and into 810 UK individuals using genome-wide SNP data. Using all SNP information Bayes C and G-BLUP had similar predictive performance across all traits within the Croatian data, and for the highly polygenic traits height and BMI when predicting into the UK data. Bayes C outperformed G-BLUP in the prediction of HDL, which is influenced by loci of moderate size, in the UK data. Supervised feature selection of a SNP subset in the G-BLUP framework provided a flexible, generalisable and computationally efficient alternative to Bayes C; but careful evaluation of predictive performance is required when supervised feature selection has been used.


PLOS ONE | 2011

Clustered Coding Variants in the Glutamate Receptor Complexes of Individuals with Schizophrenia and Bipolar Disorder

René A.W. Frank; Allan F. McRae; Andrew Pocklington; Louie N. van de Lagemaat; Pau Navarro; Mike D R Croning; Noboru H. Komiyama; Sophie J. Bradley; R. A. John Challiss; J. Douglas Armstrong; Robert D. Finn; M. P. Malloy; Alan Maclean; Sarah E. Harris; Sanjeev Bhaskar; Eleanor Howard; Sarah Hunt; Alison J. Coffey; Venkatesh Ranganath; Panos Deloukas; Jane Rogers; Walter J. Muir; Ian J. Deary; Douglas Blackwood; Peter M. Visscher; Seth G. N. Grant

Current models of schizophrenia and bipolar disorder implicate multiple genes, however their biological relationships remain elusive. To test the genetic role of glutamate receptors and their interacting scaffold proteins, the exons of ten glutamatergic ‘hub’ genes in 1304 individuals were re-sequenced in case and control samples. No significant difference in the overall number of non-synonymous single nucleotide polymorphisms (nsSNPs) was observed between cases and controls. However, cluster analysis of nsSNPs identified two exons encoding the cysteine-rich domain and first transmembrane helix of GRM1 as a risk locus with five mutations highly enriched within these domains. A new splice variant lacking the transmembrane GPCR domain of GRM1 was discovered in the human brain and the GRM1 mutation cluster could perturb the regulation of this variant. The predicted effect on individuals harbouring multiple mutations distributed in their ten hub genes was also examined. Diseased individuals possessed an increased load of deleteriousness from multiple concurrent rare and common coding variants. Together, these data suggest a disease model in which the interplay of compound genetic coding variants, distributed among glutamate receptors and their interacting proteins, contribute to the pathogenesis of schizophrenia and bipolar disorders.


Nature Communications | 2015

Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation.

María Soler Artigas; Louise V. Wain; Suzanne Miller; Abdul Kader Kheirallah; Jennifer E. Huffman; Ioanna Ntalla; Nick Shrine; Ma’en Obeidat; Holly Trochet; Wendy L. McArdle; Alexessander Couto Alves; Jennie Hui; Jing Hua Zhao; Peter K. Joshi; Alexander Teumer; Eva Albrecht; Medea Imboden; Rajesh Rawal; Lorna M. Lopez; Jonathan Marten; Stefan Enroth; Ida Surakka; Ozren Polasek; Leo-Pekka Lyytikäinen; Raquel Granell; Pirro G. Hysi; Claudia Flexeder; Anubha Mahajan; John Beilby; Yohan Bossé

Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P<5 × 10−8) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.


British Poultry Science | 2005

Mapping of quantitative trait loci affecting organ weights and blood variables in a broiler layer cross

Pau Navarro; Peter M. Visscher; Sara Knott; Dave Burt; Paul Hocking; Chris Haley

1. A genome scan was performed to locate genomic regions associated with traits that are known to vary in birds (most commonly broilers) suffering from heart, lung or muscular dysfunction and for weight of the dressed carcass and some internal organs. 2. The F2 population studied was derived from a cross between a broiler and a layer line and consisted of over 460 birds that were genotyped for 101 markers. 3. There was strong support for segregation of quantitative trait loci (QTL) for carcass and organ weights and blood variables. We identified 11 genome-wide significant QTL (most of them for dressed carcass weight) and several genome-wide suggestive QTL. 4. The results point to some genome regions that may be associated with health-related traits and merit further study, with the final aim of identifying linked genetic markers that could be used in commercial breeding programmes to decrease the incidence of muscular and metabolic disorders in broiler populations.


G3: Genes, Genomes, Genetics | 2012

Uncovering Networks from Genome-Wide Association Studies via Circular Genomic Permutation

Claudia P. Cabrera; Pau Navarro; Jennifer E. Huffman; Alan F. Wright; Caroline Hayward; Harry Campbell; James F. Wilson; Igor Rudan; Nicholas D. Hastie; Veronique Vitart; Chris Haley

Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∼300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∼1400 pathway-trait combination results with an association P value more significant than P ≤ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/.


BMC Genomics | 2013

The genomic signature of trait-associated variants

Alida S.D. Kindt; Pau Navarro; Colin A. Semple; Chris S. Haley

BackgroundGenome-wide association studies have identified thousands of SNP variants associated with hundreds of phenotypes. For most associations the causal variants and the molecular mechanisms underlying pathogenesis remain unknown. Exploration of the underlying functional annotations of trait-associated loci has thrown some light on their potential roles in pathogenesis. However, there are some shortcomings of the methods used to date, which may undermine efforts to prioritize variants for further analyses. Here, we introduce and apply novel methods to rigorously identify annotation classes showing enrichment or depletion of trait-associated variants taking into account the underlying associations due to co-location of different functional annotations and linkage disequilibrium.ResultsWe assessed enrichment and depletion of variants in publicly available annotation classes such as genic regions, regulatory features, measures of conservation, and patterns of histone modifications. We used logistic regression to build a multivariate model that identified the most influential functional annotations for trait-association status of genome-wide significant variants. SNPs associated with all of the enriched annotations were 8 times more likely to be trait-associated variants than SNPs annotated with none of them. Annotations associated with chromatin state together with prior knowledge of the existence of a local expression QTL (eQTL) were the most important factors in the final logistic regression model. Surprisingly, despite the widespread use of evolutionary conservation to prioritize variants for study we find only modest enrichment of trait-associated SNPs in conserved regions.ConclusionWe established odds ratios of functional annotations that are more likely to contain significantly trait-associated SNPs, for the purpose of prioritizing GWAS hits for further studies. Additionally, we estimated the relative and combined influence of the different genomic annotations, which may facilitate future prioritization methods by adding substantial information.


Biological Psychiatry | 2007

Haplotype Analysis and a Novel Allele-Sharing Method Refines a Chromosome 4p Locus Linked to Bipolar Affective Disorder

Stephanie Le Hellard; Andrew J. Lee; Sarah Underwood; Pippa Thomson; Stewart W. Morris; Helen S. Torrance; Susan Anderson; Richard Adams; Pau Navarro; Andrea Christoforou; Lorna M. Houlihan; Sevilla D. Detera-Wadleigh; Michael John Owen; Philip Asherson; Walter J. Muir; Douglas Blackwood; Naomi R. Wray; David J. Porteous; Kathryn L. Evans

BACKGROUND Bipolar affective disorder (BPAD) and schizophrenia (SCZ) are common conditions. Their causes are unknown, but they include a substantial genetic component. Previously, we described significant linkage of BPAD to a chromosome 4p locus within a large pedigree (F22). Others subsequently have found evidence for linkage of BPAD and SCZ to this region. METHODS We constructed high-resolution haplotypes for four linked families, calculated logarithm of the odds (LOD) scores, and developed a novel method to assess the extent of allele sharing within genes between the families. RESULTS We describe an increase in the F22 LOD score for this region. Definition and comparison of the linked haplotypes allowed us to prioritize two subregions of 3.8 and 4.4 Mb. Analysis of the extent of allele sharing within these subregions identified 200 kb that shows increased allele sharing between families. CONCLUSIONS Linkage of BPAD to chromosome 4p has been strengthened. Haplotype analysis in the additional linked families refined the 20-Mb linkage region. Development of a novel allele-sharing method allowed us to bridge the gap between conventional linkage and association studies. Description of a 200-kb region of increased allele sharing prioritizes this region, which contains two functional candidate genes for BPAD, SLC2A9, and WDR1, for subsequent studies.

Collaboration


Dive into the Pau Navarro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Haley

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Igor Rudan

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge