Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Adlard is active.

Publication


Featured researches published by Paul A. Adlard.


The Journal of Neuroscience | 2005

Voluntary Exercise Decreases Amyloid Load in a Transgenic Model of Alzheimer's Disease

Paul A. Adlard; Victoria M. Perreau; Viorela Pop; Carl W Cotman

Alzheimers disease (AD) is a progressive neurodegenerative disorder for which there are few therapeutics that affect the underlying disease mechanism. Recent epidemiological studies, however, suggest that lifestyle changes may slow the onset/progression of AD. Here we have used TgCRND8 mice to examine directly the interaction between exercise and the AD cascade. Five months of voluntary exercise resulted in a decrease in extracellular amyloid-β (Aβ) plaques in the frontal cortex (38%; p = 0.018), the cortex at the level of the hippocampus (53%; p = 0.0003), and the hippocampus (40%; p = 0.06). This was associated with decreased cortical Aβ1-40 (35%; p = 0.005) and Aβ1-42 (22%; p = 0.04) (ELISA). The mechanism appears to be mediated by a change in the processing of the amyloid precursor protein (APP) after short-term exercise, because 1 month of activity decreased the proteolytic fragments of APP [for α-C-terminal fragment (α-CTF), 54% and p = 0.04; for β-CTF, 35% and p = 0.03]. This effect was independent of mRNA/protein changes in neprilysin and insulin-degrading enzyme and, instead, may involve neuronal metabolism changes that are known to affect APP processing and to be regulated by exercise. Long-term exercise also enhanced the rate of learning of TgCRND8 animals in the Morris water maze, with significant (p < 0.02) reductions in escape latencies over the first 3 (of 6) trial days. In support of existing epidemiological studies, this investigation demonstrates that exercise is a simple behavioral intervention sufficient to inhibit the normal progression of AD-like neuropathology in the TgCRND8 mouse model.


Neuron | 2008

Rapid Restoration of Cognition in Alzheimer's Transgenic Mice with 8-Hydroxy Quinoline Analogs Is Associated with Decreased Interstitial Aβ

Paul A. Adlard; Robert A. Cherny; David Finkelstein; Elisabeth Gautier; Elysia Robb; Mikhalina Cortes; Irene Volitakis; Xiang Liu; Jeffrey P. Smith; Keyla Perez; Katrina M. Laughton; Qiao-Xin Li; Susan A. Charman; Joseph A. Nicolazzo; Simon Wilkins; Karolina Deleva; Toni Lynch; Gaik Beng Kok; Craig W. Ritchie; Rudolph E. Tanzi; Roberto Cappai; Colin L. Masters; Kevin J. Barnham; Ashley I. Bush

As a disease-modifying approach for Alzheimers disease (AD), clioquinol (CQ) targets beta-amyloid (Abeta) reactions with synaptic Zn and Cu yet promotes metal uptake. Here we characterize the second-generation 8-hydroxy quinoline analog PBT2, which also targets metal-induced aggregation of Abeta, but is more effective as a Zn/Cu ionophore and has greater blood-brain barrier permeability. Given orally to two types of amyloid-bearing transgenic mouse models of AD, PBT2 outperformed CQ by markedly decreasing soluble interstitial brain Abeta within hours and improving cognitive performance to exceed that of normal littermate controls within days. Nontransgenic mice were unaffected by PBT2. The current data demonstrate that ionophore activity, inhibition of in vitro metal-mediated Abeta reactions, and blood-brain barrier permeability are indices that predict a potential disease-modifying drug for AD. The speed of recovery of the animals underscores the acutely reversible nature of the cognitive deficits associated with transgenic models of AD.


European Journal of Neuroscience | 2001

Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus

Nicole C. Berchtold; J. Patrick Kesslak; Christian J. Pike; Paul A. Adlard; Carl W. Cotman

We investigated the possibility that estrogen and exercise interact in the hippocampus and regulate brain‐derived neurotrophic factor (BDNF), a molecule increasingly recognized for its role in plasticity and neuron function. An important aspect of this study is to examine the effect of different time intervals between estrogen loss and estrogen replacement intervention. We demonstrate that in the intact female rat, physical activity increases hippocampal BDNF mRNA and protein levels. However, the exercise effect on BDNF up‐regulation is reduced in the absence of estrogen, in a time‐dependent manner. In addition, voluntary activity itself is stimulated by the presence of estrogen. In exercising animals, estrogen deprivation reduced voluntary activity levels, while estrogen replacement restored activity to normal levels. In sedentary animals, estrogen deprivation (ovariectomy) decreased baseline BDNF mRNA and protein, which were restored by estrogen replacement. Despite reduced activity levels in the ovariectomized condition, exercise increased BDNF mRNA levels in the hippocampus after short‐term (3 weeks) estrogen deprivation. However, long‐term estrogen‐deprivation blunted the exercise effect. After 7 weeks of estrogen deprivation, exercise alone no longer affected either BDNF mRNA or protein levels. However, exercise in combination with long‐term estrogen replacement increased BDNF protein above the effects of estrogen replacement alone. Interestingly, protein levels across all conditions correlated most closely with mRNA levels in the dentate gyrus, suggesting that expression of mRNA in this hippocampal region may be the major contributor to the hippocampal BDNF protein pool. The interaction of estrogen, physical activity and hippocampal BDNF is likely to be an important issue for maintenance of brain health, plasticity and general well‐being, particularly in women.


Nature Medicine | 2012

Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export

Peng Lei; Scott Ayton; David Finkelstein; Loredana Spoerri; Giuseppe D. Ciccotosto; David K. Wright; Bruce X. Wong; Paul A. Adlard; Robert A. Cherny; Linh Q. Lam; Blaine R. Roberts; Irene Volitakis; Gary F. Egan; Catriona McLean; Roberto Cappai; James A. Duce; Ashley I. Bush

The microtubule-associated protein tau has risk alleles for both Alzheimers disease and Parkinsons disease and mutations that cause brain degenerative diseases termed tauopathies. Aggregated tau forms neurofibrillary tangles in these pathologies, but little is certain about the function of tau or its mode of involvement in pathogenesis. Neuronal iron accumulation has been observed pathologically in the cortex in Alzheimers disease, the substantia nigra (SN) in Parkinsons disease and various brain regions in the tauopathies. Here we report that tau-knockout mice develop age-dependent brain atrophy, iron accumulation and SN neuronal loss, with concomitant cognitive deficits and parkinsonism. These changes are prevented by oral treatment with a moderate iron chelator, clioquinol. Amyloid precursor protein (APP) ferroxidase activity couples with surface ferroportin to export iron, but its activity is inhibited in Alzheimers disease, thereby causing neuronal iron accumulation. In primary neuronal culture, we found loss of tau also causes iron retention, by decreasing surface trafficking of APP. Soluble tau levels fall in affected brain regions in Alzheimers disease and tauopathies, and we found a similar decrease of soluble tau in the SN in both Parkinsons disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model. These data suggest that the loss of soluble tau could contribute to toxic neuronal iron accumulation in Alzheimers disease, Parkinsons disease and tauopathies, and that it can be rescued pharmacologically.


The Journal of Neuroscience | 2010

Cognitive Loss in Zinc Transporter-3 Knock-Out Mice: A Phenocopy for the Synaptic and Memory Deficits of Alzheimer's Disease?

Paul A. Adlard; Jacqui Parncutt; David Finkelstein; Ashley I. Bush

Zinc transporter-3 (ZnT3) protein controls synaptic vesicular Zn2+ levels, which is predicted to regulate normal cognitive function. Surprisingly, previous studies found that 6- to 10-week-old ZnT3 knock-out (KO) mice did not show impairment in the Morris water maze. We hypothesized that older ZnT3 KO animals would display a cognitive phenotype. Here, we report that ZnT3 KO mice exhibit age-dependent deficits in learning and memory that are manifest at 6 months but not at 3 months of age. These deficits are associated with significant alterations in key hippocampal proteins involved in learning and memory, as assessed by Western blot. These include decreased levels of the presynaptic protein SNAP25 (−46%; p < 0.01); the postsynaptic protein PSD95 (−37%; p < 0.01); the glutamate receptors AMPAR (−34%; p < 0.01), NMDAR2a (−64%; p < 0.001), and NMDAR2b (−49%; p < 0.05); the surrogate marker of neurogenesis doublecortin (−31%; p < 0.001); and elements of the BDNF pathway, pro-BDNF (−30%; p < 0.05) and TrkB (−22%; p < 0.01). In addition, there is a concomitant decrease in neuronal spine density (−6%; p < 0.05). We also found that cortical ZnT3 levels fall with age in wild-type mice (−50%; p < 0.01) in healthy older humans (ages, 48–91 years; r 2 = 0.47; p = 0.00019) and particularly in Alzheimers disease (AD) (−36%; p < 0.0001). Thus, age-dependent loss of transsynaptic Zn2+ movement leads to cognitive loss, and since extracellular β-amyloid is aggregated by and traps this pool of Zn2+, the genetic ablation of ZnT3 may represent a phenocopy for the synaptic and memory deficits of AD.


Brain | 2011

18F-THK523: a novel in vivo tau imaging ligand for Alzheimer’s disease

Michelle Fodero-Tavoletti; Nobuyuki Okamura; Shozo Furumoto; Rachel S. Mulligan; Andrea R. Connor; Catriona McLean; Diana Cao; Angela Rigopoulos; Glenn A Cartwright; Graeme O'Keefe; Sylvia Gong; Paul A. Adlard; Kevin J. Barnham; Christopher C. Rowe; Colin L. Masters; Yukitsuka Kudo; Roberto Cappai; Kazuhiko Yanai; Victor L. Villemagne

While considerable effort has focused on developing positron emission tomography β-amyloid imaging radiotracers for the early diagnosis of Alzheimers disease, no radiotracer is available for the non-invasive quantification of tau. In this study, we detail the characterization of (18)F-THK523 as a novel tau imaging radiotracer. In vitro binding studies demonstrated that (18)F-THK523 binds with higher affinity to a greater number of binding sites on recombinant tau (K18Δ280K) compared with β-amyloid(1-42) fibrils. Autoradiographic and histofluorescence analysis of human hippocampal serial sections with Alzheimers disease exhibited positive THK523 binding that co-localized with immunoreactive tau pathology, but failed to highlight β-amyloid plaques. Micro-positron emission tomography analysis demonstrated significantly higher retention of (18)F-THK523 (48%; P < 0.007) in tau transgenic mice brains compared with their wild-type littermates or APP/PS1 mice. The preclinical examination of THK523 has demonstrated its high affinity and selectivity for tau pathology both in vitro and in vivo, indicating that (18)F-THK523 fulfils ligand criteria for human imaging trials.


Neuroscience | 2004

Voluntary exercise protects against stress-induced decreases in brain-derived neurotrophic factor protein expression

Paul A. Adlard; Carl W. Cotman

Exercise is increasingly recognized as an intervention that can reduce CNS dysfunctions such as cognitive decline, depression and stress. Previously we have demonstrated that brain-derived neurotrophic factor (BDNF) is increased in the hippocampus following exercise. In this study we tested the hypothesis that exercise can counteract a reduction in hippocampal BDNF protein caused by acute immobilization stress. Since BDNF expression is suppressed by corticosterone (CORT), circulating CORT levels were also monitored. In animals subjected to 2 h immobilization stress, CORT was elevated immediately following, and at 1 h after the cessation of stress, but remained unchanged from baseline up to 24 h post-stress. The stress protocol resulted in a reduction in BDNF protein at 5 and 10 h post-stress that returned to baseline at 24 h. To determine if exercise could prevent this stress-induced reduction in BDNF protein, animals were given voluntary access to running wheels for 3 weeks prior to the stress. Stressed animals, in the absence of exercise, again demonstrated an initial elevation in CORT (at 0 h) and a subsequent decrease in hippocampal BDNF at the 10 h time point. Exercising animals, both non-stressed and stressed, demonstrated circulating CORT and hippocampal BDNF protein levels that were significantly elevated above control values at both time points examined (0 and 10 h post-stress). Thus, the persistently high CORT levels in exercised animals did not affect the induction of BDNF with exercise, and the effect of immobilization stress on BDNF protein was overcome. To examine the role of CORT in the stress-related regulation of BDNF protein, experiments were carried out in adrenalectomized (ADX) animals. BDNF protein was not downregulated as a result of immobilization stress in ADX animals, while there continued to be an exercise-induced upregulation of BDNF. This study demonstrates that CORT modulates stress-related alterations in BDNF protein. Further, exercise can override the negative effects of stress and high levels of CORT on BDNF protein. Voluntary physical activity may, therefore, represent a simple non-pharmacological tool for the maintenance of neurotrophin levels in the brain.


Progress in Neurobiology | 2000

The cause of neuronal degeneration in Alzheimer's disease

Jc Vickers; Tracey C. Dickson; Paul A. Adlard; Helen L. Saunders; Carolyn King; Graeme H. McCormack

Alzheimers disease is associated with a specific pattern of pathological changes in the brain that result in neurodegeneration and the progressive development of dementia. Pathological hallmarks common to the disease include beta-amyloid plaques, dystrophic neurites associated with plaques and neurofibrillary tangles within nerve cell bodies. The exact relationship between these pathological features has been elusive, although it is clear that beta-amyloid plaques precede neurofibrillary tangles in neocortical areas. Examination of the brains of individuals in the preclinical stage of the disease have shown that the earliest form of neuronal pathology associated with beta-amyloid plaques resembles the cellular changes that follow structural injury to axons. Thus, the development of beta-amyloid plaques in the brain may cause physical damage to axons, and the abnormally prolonged stimulation of the neuronal response to this kind of injury ultimately results in the profound cytoskeletal alterations that underlie neurofibrillary pathology and neurodegeneration. Therapeutically, inhibition of the neuronal reaction to physical trauma may be a useful neuroprotective strategy in the earliest stages of Alzheimers disease.


Journal of Alzheimer's Disease | 2006

Metals and Alzheimer's disease.

Paul A. Adlard; Ashley I. Bush

There is increasing evidence to support a role for both the amyloid beta-protein precursor (AbetaPP) and its proteolytic fragment, amyloid beta (Abeta), in metal ion homeostasis. Furthermore, metal ions such as zinc and copper can interact with both AbetaPP and Abeta to potentiate Alzheimers disease by participating in the aggregation of these normal cellular proteins and in the generation of reactive oxygen species. In addition, metal ions may interact on several other AD-related pathways, including those involved in neurofibrillary tangle formation, secretase cleavage of AbetaPP and proteolytic degradation of Abeta. As such, a dysregulation of metal ion homeostasis, as occurs with both aging and in AD, may foster an environment that can both precipitate and accelerate degenerative conditions such as AD. This offers a broad biochemical front for novel therapeutic interventions.


PLOS ONE | 2007

Mitochondrial oxidative stress causes hyperphosphorylation of tau.

Simon Melov; Paul A. Adlard; Karl Morten; Felicity Johnson; Tamara R. Golden; Doug Hinerfeld; Birgit Schilling; Christine Mavros; Colin L. Masters; Irene Volitakis; Qiao-Xin Li; Katrina M. Laughton; Alan Hubbard; Robert A. Cherny; Brad Gibson; Ashley I. Bush

Age-related neurodegenerative disease has been mechanistically linked with mitochondrial dysfunction via damage from reactive oxygen species produced within the cell. We determined whether increased mitochondrial oxidative stress could modulate or regulate two of the key neurochemical hallmarks of Alzheimers disease (AD): tau phosphorylation, and ß-amyloid deposition. Mice lacking superoxide dismutase 2 (SOD2) die within the first week of life, and develop a complex heterogeneous phenotype arising from mitochondrial dysfunction and oxidative stress. Treatment of these mice with catalytic antioxidants increases their lifespan and rescues the peripheral phenotypes, while uncovering central nervous system pathology. We examined sod2 null mice differentially treated with high and low doses of a catalytic antioxidant and observed striking elevations in the levels of tau phosphorylation (at Ser-396 and other phospho-epitopes of tau) in the low-dose antioxidant treated mice at AD-associated residues. This hyperphosphorylation of tau was prevented with an increased dose of the antioxidant, previously reported to be sufficient to prevent neuropathology. We then genetically combined a well-characterized mouse model of AD (Tg2576) with heterozygous sod2 knockout mice to study the interactions between mitochondrial oxidative stress and cerebral Aß load. We found that mitochondrial SOD2 deficiency exacerbates amyloid burden and significantly reduces metal levels in the brain, while increasing levels of Ser-396 phosphorylated tau. These findings mechanistically link mitochondrial oxidative stress with the pathological features of AD.

Collaboration


Dive into the Paul A. Adlard's collaboration.

Top Co-Authors

Avatar

Ashley I. Bush

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

David Finkelstein

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert A. Cherny

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Dominic J. Hare

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Jc Vickers

University of Tasmania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Volitakis

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott Ayton

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge