Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Baldock is active.

Publication


Featured researches published by Paul A. Baldock.


Journal of Clinical Investigation | 2002

Hypothalamic Y2 receptors regulate bone formation

Paul A. Baldock; Amanda Sainsbury; Michelle Couzens; Ronaldo F. Enriquez; Gethin P. Thomas; Edith M. Gardiner; Herbert Herzog

Neuropeptide Y (NPY) is a downstream modulator of leptin action, possibly at the level of the arcuate nucleus where NPY neurons are known to express both leptin receptors and Y2 receptors. In addition to the well-described role of NPY and leptin in energy balance and obesity, intracerebroventricular administration of NPY or leptin also causes bone loss. Here we show that Y2 receptor-deficient mice have a twofold increase in trabecular bone volume as well as greater trabecular number and thickness compared with control mice. We also demonstrate that central Y2 receptors are crucial for this process, since selective deletion of hypothalamic Y2 receptors in mature conditional Y2 knockout mice results in an identical increase in trabecular bone volume within 5 weeks. This hypothalamus-specific Y2 receptor deletion stimulates osteoblast activity and increases the rate of bone mineralization and formation, with no effect on osteoblast or osteoclast surface measurements. The lack of any changes in plasma total calcium, leptinemia, or hypothalamo-pituitary-corticotropic, -thyrotropic, -somatotropic, or -gonadotropic output suggests that Y2 receptors do not modulate bone formation by humoral mechanisms, and that alteration of autonomic function through hypothalamic Y2 receptors may play a key role in a major central regulatory circuit of bone formation.


Nature Medicine | 2007

Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1.

Heiko Johnen; Shu Lin; Tamara Kuffner; David A. Brown; Vicky Wang-Wei Tsai; Asne R. Bauskin; Liyun Wu; Greg J. Pankhurst; Lele Jiang; Simon Junankar; Mark Hunter; W. Douglas Fairlie; Nicola J. Lee; Ronaldo F. Enriquez; Paul A. Baldock; Eva Corey; Fred S. Apple; MaryAnn M. Murakami; En Ju Lin; Chuansong Wang; Matthew J. During; Amanda Sainsbury; Herbert Herzog; Samuel N. Breit

Anorexia and weight loss are part of the wasting syndrome of late-stage cancer, are a major cause of morbidity and mortality in cancer, and are thought to be cytokine mediated. Macrophage inhibitory cytokine-1 (MIC-1) is produced by many cancers. Examination of sera from individuals with advanced prostate cancer showed a direct relationship between MIC-1 abundance and cancer-associated weight loss. In mice with xenografted prostate tumors, elevated MIC-1 levels were also associated with marked weight, fat and lean tissue loss that was mediated by decreased food intake and was reversed by administration of antibody to MIC-1. Additionally, normal mice given systemic MIC-1 and transgenic mice overexpressing MIC-1 showed hypophagia and reduced body weight. MIC-1 mediates its effects by central mechanisms that implicate the hypothalamic transforming growth factor-β receptor II, extracellular signal–regulated kinases 1 and 2, signal transducer and activator of transcription-3, neuropeptide Y and pro-opiomelanocortin. Thus, MIC-1 is a newly defined central regulator of appetite and a potential target for the treatment of both cancer anorexia and weight loss, as well as of obesity.


The FASEB Journal | 2000

Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage

Edith M. Gardiner; Paul A. Baldock; Gethin P. Thomas; Natalie A. Sims; N. Kathryn Henderson; Bruce W. Hollis; Christopher White; Kathryn L. Sunn; Nigel Alexander Morrison; William R. Walsh; John A. Eisman

The microarchitecture of bone is regulated by complex interactions between the bone‐forming and resorbing cells, and several compounds regulate both actions. For example, vitamin D, which is required for bone mineralization, also stimulates bone resorption. Transgenic mice overexpressing the vitamin D receptor solely in mature cells of the osteoblastic bone‐forming lineage were generated to test the potential therapeutic value of shifting the balance of vitamin D activity in favor of bone formation. Cortical bone was 5% wider and 15% stronger in these mice due to a doubling of periosteal mineral apposition rate without altered body weight or calcium homeostatic hormone levels. A 20% increase in trabecular bone volume in transgenic vertebrae was also observed, unexpectedly associated with a 30% reduction in resorption surface rather than greater bone formation. These findings indicate anabolic vitamin D activity in bone and identify a previously unknown pathway from mature osteoblastic cells to inhibit osteoclastic bone resorption, counterbalancing the known stimulatory action through immature osteoblastic cells. A therapeutic approach that both stimulates cortical anabolic and inhibits trabecular resorptive pathways would be ideal for treatment of osteoporosis and other osteopenic disorders.—Gardiner, E. M., Baldock, P. A., Thomas, G. P., Sims, N. A., Henderson, N. K., Hollis, B., White, C. P., Sunn, K. L., Morrison, N. A., Walsh, W. R., Eisman, J. A. Increased formation and decreased resorption of bone in mice with elevated vitamin D receptor in mature cells of the osteoblastic lineage. FASEB J. 14, 1908–1916 (2000)


Diabetologia | 2006

Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity

Dana Boey; Shu Lin; Tim Karl; Paul A. Baldock; Nicola J. Lee; Ronaldo F. Enriquez; Michelle Couzens; Katy Slack; R Dallmann; Amanda Sainsbury; Herbert Herzog

Aims/hypothesisObese people exhibit reduced circulating peptide YY (PYY) levels, but it is unclear whether this is a consequence or cause of obesity. We therefore investigated the effect of Pyy ablation on energy homeostasis.MethodsBody composition, i.p. glucose tolerance, food intake and hypothalamic neuropeptide expression were determined in Pyy knock-out and wild-type mice on a normal or high-fat diet.ResultsPyy knock-out significantly increased bodyweight and increased fat mass by 50% in aged females on a normal diet. Male chow-fed Pyy−/− mice were resistant to obesity but became significantly fatter and glucose-intolerant compared with wild-types when fed a high-fat diet. Pyy knock-out animals exhibited significantly elevated fasting or glucose-stimulated serum insulin concentrations vs wild-types, with no increase in basal or fasting-induced food intake. Pyy knock-out decreased or had no effect on neuropeptide Y expression in the arcuate nucleus of the hypothalamus, and significantly increased proopiomelanocortin expression in this region. Male but not female knock-outs exhibited significantly increased growth hormone-releasing hormone expression in the ventromedial hypothalamus and significantly elevated serum IGF-I and testosterone levels. This sex difference in activation of the hypothalamo–pituitary somatotrophic axis by Pyy ablation may contribute to the resistance of chow-fed male knock-outs to late-onset obesity.Conclusions/interpretationPYY signalling is important in the regulation of energy balance and glucose homeostasis, possibly via regulation of insulin release. Therefore reduced PYY levels may predispose to the development of obesity, particularly with ageing or under conditions of high-fat feeding.


Journal of Biological Chemistry | 2007

Novel Role of Y1 Receptors in the Coordinated Regulation of Bone and Energy Homeostasis

Paul A. Baldock; Susan J. Allison; Pernilla Lundberg; Nicola J. Lee; Katy Slack; En-Ju D. Lin; Ronaldo F. Enriquez; Michelle M. McDonald; Lei Zhang; Matthew J. During; David G. Little; John A. Eisman; Edith M. Gardiner; Ernie Yulyaningsih; Shu Lin; Amanda Sainsbury; Herbert Herzog

The importance of neuropeptide Y (NPY) and Y2 receptors in the regulation of bone and energy homeostasis has recently been demonstrated. However, the contributions of the other Y receptors are less clear. Here we show that Y1 receptors are expressed on osteoblastic cells. Moreover, bone and adipose tissue mass are elevated in Y1-/- mice with a generalized increase in bone formation on cortical and cancellous surfaces. Importantly, the inhibitory effects of NPY on bone marrow stromal cells in vitro are absent in cells derived from Y1-/- mice, indicating a direct action of NPY on bone cells via this Y receptor. Interestingly, in contrast to Y2 receptor or germ line Y1 receptor deletion, conditional deletion of hypothalamic Y1 receptors in adult mice did not alter bone homeostasis, food intake, or adiposity. Furthermore, deletion of both Y1 and Y2 receptors did not produce additive effects in bone or adiposity. Thus Y1 receptor pathways act powerfully to inhibit bone production and adiposity by nonhypothalamic pathways, with potentially direct effects on bone tissue through a single pathway with Y2 receptors.


Journal of Bone and Mineral Research | 2006

Vitamin D action and regulation of bone remodeling : suppression of osteoclastogenesis by the mature osteoblast

Paul A. Baldock; Gethin P. Thomas; Jason M. Hodge; Sara U. K. Baker; Uwe Dressel; Peter D. O'loughlin; Geoffrey C. Nicholson; Kathy Briffa; John A. Eisman; Edith M. Gardiner

Vitamin D acts through the immature osteoblast to stimulate osteoclastogenesis. Transgenic elevation of VDR in mature osteoblasts was found to inhibit osteoclastogenesis associated with an altered OPG response. This inhibition was confined to cancellous bone. This study indicates that vitamin D–mediated osteoclastogenesis is regulated locally by OPG production in the mature osteoblast.


Journal of Bone and Mineral Research | 2005

Hypothalamic Control of Bone Formation: Distinct Actions of Leptin and Y2 Receptor Pathways

Paul A. Baldock; Amanda Sainsbury; Susan J. Allison; En-Ju D. Lin; Michelle Couzens; Dana Boey; Ronaldo F. Enriquez; Matthew J. During; Herbert Herzog; Edith M. Gardiner

Leptin and Y2 receptors on hypothalamic NPY neurons mediate leptin effects on energy homeostasis; however, their interaction in modulating osteoblast activity is not established. Here, direct testing of this possibility indicates distinct mechanisms of action for leptin anti‐osteogenic and Y2−/− anabolic pathways in modulating bone formation.


Journal of Bone and Mineral Research | 2003

Zoledronic acid treatment results in retention of femoral head structure after traumatic osteonecrosis in young Wistar rats.

David G. Little; Rachel A. Peat; Anthony McEvoy; Paul R. Williams; Elisabeth J Smith; Paul A. Baldock

Osteonecrosis (ON) of the femoral head in childhood can lead to loss of femoral head architecture and subsequent deformity. When femoral head ON was surgically induced in 24 rats, zoledronic acid treatment and prophylaxis improved sphericity and maintenance of architecture at 6 weeks. This preliminary experiment supports the use of bisphosphonates in childhood ON.


Journal of Biological Chemistry | 2007

Greater Bone Formation of Y2 Knockout Mice Is Associated with Increased Osteoprogenitor Numbers and Altered Y1 Receptor Expression

Pernilla Lundberg; Susan J. Allison; Nicola J. Lee; Paul A. Baldock; Nathalie Brouard; Stephanie Rost; Ronaldo F. Enriquez; Amanda Sainsbury; Meriem Lamghari; Paul J. Simmons; John A. Eisman; Edith M. Gardiner; Herbert Herzog

Germ line or hypothalamus-specific deletion of Y2 receptors in mice results in a doubling of trabecular bone volume. However, the specific mechanism by which deletion of Y2 receptors increases bone mass has not yet been identified. Here we show that cultured adherent bone marrow stromal cells from Y2-/- mice also demonstrate increased mineralization in vitro. Isolation of two populations of progenitor cell types, an immature mesenchymal stem cell population and a more highly differentiated population of progenitor cells, revealed a greater number of the progenitor cells within the bone of Y2-/- mice. Analysis of Y receptor transcripts in cultured stromal cells from wild-type mice revealed high levels of Y1 but not Y2, Y4, Y5, or y6 receptor mRNA. Interestingly, germ line Y2 receptor deletion causes Y1 receptor down-regulation in stromal cells and bone tissue possibly due to the lack of feedback inhibition of NPY release and subsequent overstimulation of Y1 receptors. Furthermore, deletion of Y1 receptors resulted in increased bone mineral density in mice. Together, these findings indicate that the greater number of mesenchymal progenitors and the altered Y1 receptor expression within bone cells in the absence of Y2 receptors are a likely mechanism for the greater bone mineralization in vivo and in vitro, opening up potential new treatment avenues for osteoporosis.


Molecular and Cellular Biology | 2003

Synergistic Effects of Y2 and Y4 Receptors on Adiposity and Bone Mass Revealed in Double Knockout Mice

Amanda Sainsbury; Paul A. Baldock; Christoph Schwarzer; Naohiko Ueno; Ronaldo F. Enriquez; Michelle Couzens; Akio Inui; Herbert Herzog; Edith M. Gardiner

ABSTRACT Neuropeptide Y regulates numerous physiological processes via at least five different Y receptors, but the specific roles of each receptor are still unclear. We previously demonstrated that Y2 receptor knockout results in a lean phenotype, increased cancellous bone volume, and an increase in plasma pancreatic polypeptide (PP), a ligand for Y4 receptors. PP-overexpressing mice are also known to have a lean phenotype. Deletion of the Y4 receptor also produced a lean phenotype and increased plasma PP levels. We therefore hypothesized that part of the Y2 phenotype results from increased PP action on Y4 receptors and tested this in PP transgenic Y4−/− and Y2−/− Y4−/− double knockout mice. Bone mass was not altered in Y4 knockout mice. Surprisingly, despite significant hyperphagia, Y2−/− Y4−/− mice retained a markedly lean phenotype, with reduced body weight, white adipose tissue mass, leptinemia, and insulinemia. Furthermore, bone volume was also increased threefold in Y2−/− Y4−/− mice, and this was associated with enhanced osteoblastic activity. These changes were more pronounced than those observed in Y2−/− mice, suggesting synergy between Y2 and Y4 receptor pathways. The lack of bone changes in PP transgenic mice suggests that PP alone is not responsible for the bone mass increases but might play a major role in the lean phenotype. However, a synergistic interaction between Y2 and Y4 pathways seems to regulate bone volume and adiposity and could have important implications for possible interventions in obesity and for anabolic treatment of osteoporotic bone loss.

Collaboration


Dive into the Paul A. Baldock's collaboration.

Top Co-Authors

Avatar

Herbert Herzog

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ronaldo F. Enriquez

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Eisman

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nicola J. Lee

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amy D. Nguyen

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

David G. Little

Children's Hospital at Westmead

View shared research outputs
Top Co-Authors

Avatar

Shu Lin

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge