Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Bartell is active.

Publication


Featured researches published by Paul A. Bartell.


Physiological and Biochemical Zoology | 2010

Biological Clocks and Regulation of Seasonal Reproduction and Migration in Birds

Vinod Kumar; John C. Wingfield; Alistair Dawson; Marilyn Ramenofsky; Sangeeta Rani; Paul A. Bartell

Timekeeping is important at two levels: to time changes in physiology and behavior within each day and within each year. For the former, birds have a system of at least three independent circadian clocks present in the retina of the eyes, the pineal gland, and the hypothalamus. This differs from the situation in mammals in which the input, pacemaker, and output are localized in different structures. Each bird clock interacts with at least one other clock, and together, they appear to form a centralized clock system that keeps daily time. These clocks have a powerful endogenous component, and the daily light‐dark cycle entrains them to 24 h. The timing and duration of life history stages that make up annual cycle of an individual must also be controlled by some form of timekeeping. However, evidence for the existence of an equivalent endogenous circannual clock is less clear. Environmental cues, particularly photoperiod, appear to have a more direct role than simply entraining the clock to calendar time. For example, the timing of migration is probably greatly influenced by photoperiod, but its manifestation each day, as Zugunruhe, appears to be under circadian control. Migration involves marked changes in physiology to cope with the energetic demands. There is still much that we do not know about how organisms’ timekeeping systems respond to their natural environment, particularly how salient signals from the environment are perceived and then transduced into appropriately timed biological functions. However, given that changes in environmental input affects the clock, increasing human disturbance of the environment is likely to adversely affect these systems.


Journal of Biological Rhythms | 2005

A separate circadian oscillator controls nocturnal migratory restlessness in the songbird Sylvia borin

Paul A. Bartell; Eberhard Gwinner

When confined to a cage, migratory songbirds exhibit nocturnal migratory restlessness (also called Zugunruhe) during the spring and autumn migratory periods, even though these birds are exclusively diurnal during the remainder of the year. Zugunruhe, which has been demonstrated to be under the direct control of a circannual timer, is characterized by a stereotypic “wing-whirring” behavior while the bird is perched. To elucidate the role played by the circadian system in the regulation of Zugunruhe, the authors studied the activity of garden warblers (Sylvia borin), long-distance nocturnal migrants, under skeleton photoperiods of different lengths and under constant dim light. In 11.5D:1L:10.5D:1L skeleton photoperiods, the authors found that Zugunruhe free-ran in a substantial proportion of birds, while their normal daily activities (e.g., feeding and preening) remained synchronized to 24 h. Some birds expressing Zugunruhe under constant dim light continued to show 2 distinct bouts of activity: one corresponding to daily activities, the other to wing-whirring. In some cases, these 2 bouts crossed while free-running with different periods. Birds expressing Zugunruhe also had significantly longer free-running periods than birds that did not. The study data suggest that the seasonal appearance of Zugunruhe is the result of the interactions of at least 2 circadian oscillators and that it is the phase relationship of these 2 oscillators that determines when nocturnal migratory restlessness is expressed. Furthermore, these data are consistent with the previously proposed internal coincidence hypothesis as a model for the ontogeny of circannual rhythms.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Rhythmic changes in colonic motility are regulated by period genes

Willemijntje A. Hoogerwerf; Vahakn B. Shahinian; Germaine Cornélissen; Franz Halberg; Jonathon Bostwick; John Timm; Paul A. Bartell; Vincent M. Cassone

Human bowel movements usually occur during the day and seldom during the night, suggesting a role for a biological clock in the regulation of colonic motility. Research has unveiled molecular and physiological mechanisms for biological clock function in the brain; less is known about peripheral rhythmicity. This study aimed to determine whether clock genes such as period 1 (per1) and period2 (per2) modulate rhythmic changes in colonic motility. Organ bath studies, intracolonic pressure measurements, and stool studies were used to examine measures of colonic motility in wild-type and per1per2 double-knockout mice. To further examine the mechanism underlying rhythmic changes in circular muscle contractility, additional studies were completed in neuronal nitric oxide synthase (nNOS) knockout mice. Intracolonic pressure changes and stool output in vivo, and colonic circular muscle contractility ex vivo, are rhythmic with greatest activity at the start of night in nocturnal wild-type mice. In contrast, rhythmicity in these measures was absent in per1per2 double-knockout mice. Rhythmicity was also abolished in colonic circular muscle contractility of wild-type mice in the presence of N(omega)-nitro-L-arginine methyl ester and in nNOS knockout mice. These findings suggest that rhythms in colonic motility are regulated by both clock genes and a nNOS-mediated inhibitory process and suggest a connection between these two mechanisms.


Journal of Biological Rhythms | 2008

Duration of Melatonin Regulates Seasonal Changes in Song Control Nuclei of the House Sparrow, Passer domesticus: Independence from Gonads and Circadian Entrainment

Vincent M. Cassone; Paul A. Bartell; Barbara J. Earnest; Vinod Kumar

Avian behavior and physiology are temporally regulated by a complex circadian clock on both a daily and an annual basis. The circadian secretion of the hormone melatonin is a critical component of the regulation of circadian/daily processes in passerine birds, but there is little evidence that the gland regulates annual changes in primary reproductive function. Here it is shown that locomotor rhythms of house sparrows, Passer domesticus, which are made arrhythmic by either pinealectomy or maintenance in constant light, can be synchronized by daily administration of melatonin of different durations to simulate the melatonin profiles indicative of long and short photoperiods. Pinealectomized male sparrows maintained in constant darkness were entrained by both melatonin regimens. In both cases, testes were regressed and the song control nuclei were small. Intact male house sparrows maintained in constant light were also entrained to both melatonin regimens. However, sparrows that received a long duration melatonin cycle exhibited small song control nuclei, while sparrows that received short duration melatonin or no melatonin at all exhibited large song control nuclei. The data indicate that seasonal changes in melatonin duration contribute to the regulation of song control nuclei.


European Journal of Neuroscience | 2002

Effect of melatonin administration on qPer2, qPer3, and qClock gene expression in the suprachiasmatic nucleus of Japanese quail

Shinobu Yasuo; Takashi Yoshimura; Paul A. Bartell; Masayuki Iigo; Eri Makino; Naritoshi Okabayashi; Shizufumi Ebihara

Temporal changes of mRNA expression of three clock genes, qPer2, qPer3 and qClock, were studied in the suprachiasmatic nucleus (SCN) of Japanese quail under different light conditions, as well as under the condition of continuous melatonin. In addition, the expression of melatonin receptor genes, Mel1a and Mel1c, in the SCN were also examined. The expression of qPer2 mRNA showed robust oscillation during both light and dark (LD) 12:12 cycles and under constant dark conditions (DD), but did not exhibit circadian rhythmicity in constant light conditions (LL), instead being expressed at a consistently high level. Expression of qPer3 also showed robust oscillation under both LD and DD conditions. Unlike qPer2 however, qPer3 mRNA expression remained rhythmic under LL conditions. Contrary to the findings on the other clock genes, no remarkable rhythmicity was detectable in either light condition. Both Mel1a and Mel1c mRNAs were detected in the SCN, however, Mel1a mRNA levels were higher than Mel1c and showed daily rhythmicity. Although implantation of melatonin tubes caused constant high levels of plasma melatonin and consequently masked the endogenous daily melatonin rhythm, no significant differences in the expression pattern of any of the three clock genes were observed between birds with and without constant melatonin. In addition, a single injection of melatonin did not affect mRNA expression of these clock genes. These results suggest that melatonin does not affect transcription of clock genes, but may act on the mechanism of synchronization among SCN oscillatory cells.


General and Comparative Endocrinology | 2009

Modulation of metabolic and clock gene mRNA rhythms by pineal and retinal circadian oscillators

Stephen P. Karaganis; Paul A. Bartell; Vikram R. Shende; Ashli F. Moore; Vincent M. Cassone

Avian circadian organization involves interactions between three neural pacemakers: the suprachiasmatic nuclei (SCN), pineal, and retina. Each of these structures is linked within a neuroendocrine loop to influence downstream processes and peripheral oscillations. However, the contribution of each structure to drive or synchronize peripheral oscillators or circadian outputs in avian species is largely unknown. To explore these interactions in the chick, we measured 2-deoxy[(14)C]-glucose (2DG) uptake and mRNA expression of the chick clock genes bmal1, cry1, and per3 in three brain areas and in two peripheral organs in chicks that underwent pinealectomy, enucleation, or sham surgery. We found that 2DG uptake rhythms damp under constant darkness in intact animals, while clock gene mRNA levels continue to cycle, demonstrating that metabolic rhythms are not directly driven by clock gene transcription. Moreover, 2DG rhythms are not phase-locked to rhythms of clock gene mRNA. However, pinealectomy and enucleation had similar disruptive effects on both metabolic and clock gene rhythms, suggesting that both of these oscillators act similarly to reinforce molecular and physiological rhythms in the chicken. Finally, we show that the relative phasing of at least one clock gene, cry1, varies between central and peripheral oscillators in a tissue specific manner. These data point to a complex, differential orchestration of central and peripheral oscillators in the chick, and, importantly, indicate a disconnect between canonical clock gene regulation and circadian control of metabolism.


Journal of Biological Rhythms | 2002

Circadian Rhythm of Iguana Electroretinogram: The Role of Dopamine and Melatonin

Manuel Miranda-Anaya; Paul A. Bartell; Michael Menaker

The amplitude of the b-wave of the electroretinogram (ERG) varies with a circadian rhythm in the green iguana; the amplitude is high during the day (or subjective day) and low during the night (or subjective night). Dopamine and melatonin contents in the eye are robustly rhythmic under constant conditions; dopamine levels are high during the subjective day, and melatonin levels are high during the subjective night. Dopamine and melatonin affect the amplitude of the b-wave in an antagonistic and phase-dependent manner: dopamine D2-receptor agonists injected intraocularly during the subjective night produce high-amplitude b-waves characteristic of the subjective day, whereas melatonin injected intraocularly during the subjective day reduces b-wave amplitude. Sectioning the optic nerve abolishes the circadian rhythms of b-wave amplitude and of dopamine content. The results of this study suggest that in iguana, a negative feedback loop involving dopamine and melatonin regulates the circadian rhythm of the ERG b-wave amplitude that is at least in part generated in the brain.


Journal of Biological Rhythms | 2000

Circadian rhythm of ERG in Iguana iguana: role of the pineal.

Manuel Miranda-Anaya; Paul A. Bartell; Shin Yamazaki; Michael Menaker

In green iguanas, the pineal controls the circadian rhythm of body temperature but not the rhythm of locomotor activity. As part of a program to investigate the characteristics of this multioscillator circadian system, the authors studied the circadian rhythms of the electroretinographic response (ERG) and asked whether the pineal gland is necessary for the expression of this rhythm. ERGs from a total of 24 anesthetized juvenile iguanas were recorded under four different conditions: (a) complete darkness (DD), (b) dim light-dark cycles (dLD), (c) constant dim light (dLL), and (d) pinealectomized in DD. Results demonstrate that the b-wave component of the ERG shows a very clear circadian rhythm in DD and that this rhythm persists in dLL and entrains to dLD cycles. The ERG response is maximally sensitive during the subjective day. Pinealectomy does not abolish the circadian rhythm in ERG, demonstrating that the oscillator responsible for the ERG rhythm is located elsewhere.


Physiological Reports | 2014

The daily rhythm of milk synthesis is dependent on the timing of feed intake in dairy cows

L. Whitney Rottman; Y. Ying; Kan Zhou; Paul A. Bartell; K.J. Harvatine

Regulation of the daily rhythm of milk synthesis is important to production animals and breastfeeding, but is difficult to observe in nursing animals. The rate of food intake varies over the day and is expected to create a daily rhythm of nutrient absorption. The objective of this study was to determine if the timing of food intake entrains a daily pattern of milk synthesis. Seventeen Holstein cows were used in a crossover design. Treatments were ad libitum feeding of a total mixed ration once daily (1× fed) or fed in four equal meals every 6 h (4× fed). Cows were milked every 6 h the last 7 days of each period. There was a treatment by time of day interaction for milk and milk component yield and concentration. Milk fat and protein concentration and yield exhibited a daily rhythm and the amplitude of the rhythm was reduced in 4× fed. In addition, milk fat percent was higher in 4× fed than 1× fed at three of the four milking intervals (0.22–0.45% higher) and 4× fed increased daily milk fat yield. Treatment by time of day interactions were detected for plasma glucose, insulin, and blood urea nitrogen. These variables also fit a cosine function with a 24 h period and the amplitudes of plasma glucose, insulin, and blood urea nitrogen rhythms were decreased by 4× feeding. In conclusion, there is a circadian pattern of milk synthesis in the dairy cow that is responsive to the timing of food intake.


Journal of Biological Rhythms | 2004

Period and Phase Control in a Multioscillatory Circadian System (Iguana Iguana)

Paul A. Bartell; Manuel Miranda-Anaya; Michael Menaker

The circadian system of the lizard Iguana iguana is composed of several independent pacemakers that work in concert: the pineal gland, retinae of the lateral eyes, and a fourth oscillator presumed to be located in the hypothalamus. These pacemakers govern the circadian expression of multiple behaviors and physiological processes, including rhythms in locomotor activity, endogenous body temperature, electroretinogram, and melatonin synthesis. The numerous, easily measurable rhythmic outputs make the iguana an ideal organism for examining the contributions of individual oscillators and their interactions in governing the expression of overt circadian rhythms. The authors have examined the effects of pinealectomy and enucleation on the endogenous body temperature rhythm (BTR) and locomotor activity rhythm (LAR) of juvenile iguanas at constant temperature both in LD cycles and in constant darkness (DD). They measured the periods (τ) of the circadian rhythms of LAR and BTR, the phase relationships between them in DD (ΨAT), and the phase relationship between each rhythm and the light cycle (ΨRL). Pinealectomy lengthened τ of locomotor activity in all animals tested and abolished the BTR in two-thirds of the animals. In those animals in which the BTR did persist following pinealectomy, τ lengthened to the same extent as that of locomotor activity. Pinealectomy also delayed the onset of activity with respect to its normal phase relationship with body temperature in DD. Enucleation alone had no significant effect on τ of LAR or BTR; however, after enucleation, BTR became 180 ° out of phase from LAR in DD. After both pinealectomy and enucleation, 4 of 16 animals became arrhythmic in both activity and body temperature. Their data suggest that rhythmicity, period, and phase of overt circadian behaviors are regulated through the combined output of multiple endogenous circadian oscillators.

Collaboration


Dive into the Paul A. Bartell's collaboration.

Top Co-Authors

Avatar

K.J. Harvatine

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Y. Ying

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Miranda-Anaya

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Horvat-Gordon

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Niu

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Alexander Taylor

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Erica F. Stuber

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge