Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Cullen is active.

Publication


Featured researches published by Paul A. Cullen.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Genome reduction in Leptospira borgpetersenii reflects limited transmission potential

Dieter M. Bulach; Richard L. Zuerner; Peter J. Wilson; Torsten Seemann; Annette McGrath; Paul A. Cullen; John M. Davis; Matthew S. Johnson; Elizabeth Kuczek; David P. Alt; Brooke Peterson-Burch; Ross L. Coppel; Julian I. Rood; John K. Davies; Ben Adler

Leptospirosis is one of the most common zoonotic diseases in the world, resulting in high morbidity and mortality in humans and affecting global livestock production. Most infections are caused by either Leptospira borgpetersenii or Leptospira interrogans, bacteria that vary in their distribution in nature and rely on different modes of transmission. We report the complete genomic sequences of two strains of L. borgpetersenii serovar Hardjo that have distinct phenotypes and virulence. These two strains have nearly identical genetic content, with subtle frameshift and point mutations being a common form of genetic variation. Starkly limited regions of synteny are shared between the large chromosomes of L. borgpetersenii and L. interrogans, probably the result of frequent recombination events between insertion sequences. The L. borgpetersenii genome is ≈700 kb smaller and has a lower coding density than L. interrogans, indicating it is decaying through a process of insertion sequence-mediated genome reduction. Loss of gene function is not random but is centered on impairment of environmental sensing and metabolite transport and utilization. These features distinguish L. borgpetersenii from L. interrogans, a species with minimal genetic decay and that survives extended passage in aquatic environments encountering a mammalian host. We conclude that L. borgpetersenii is evolving toward dependence on a strict host-to-host transmission cycle.


Infection and Immunity | 2002

Global Analysis of Outer Membrane Proteins from Leptospira interrogans Serovar Lai

Paul A. Cullen; Stuart J. Cordwell; Dieter M. Bulach; David A. Haake; Ben Adler

ABSTRACT Recombinant leptospiral outer membrane proteins (OMPs) can elicit immunity to leptospirosis in a hamster infection model. Previously characterized OMPs appear highly conserved, and thus their potential to stimulate heterologous immunity is of critical importance. In this study we undertook a global analysis of leptospiral OMPs, which were obtained by Triton X-114 extraction and phase partitioning. Outer membrane fractions were isolated from Leptospira interrogans serovar Lai grown at 20, 30, and 37°C with or without 10% fetal calf serum and, finally, in iron-depleted medium. The OMPs were separated by two-dimensional gel electrophoresis. Gel patterns from each of the five conditions were compared via image analysis, and 37 gel-purified proteins were tryptically digested and characterized by mass spectrometry (MS). Matrix-assisted laser desorption ionization-time-of-flight MS was used to rapidly identify leptospiral OMPs present in sequence databases. Proteins identified by this approach included the outer membrane lipoproteins LipL32, LipL36, LipL41, and LipL48. No known proteins from any cellular location other than the outer membrane were identified. Tandem electrospray MS was used to obtain peptide sequence information from eight novel proteins designated pL18, pL21, pL22, pL24, pL45, pL47/49, pL50, and pL55. The expression of LipL36 and pL50 was not apparent at temperatures above 30°C or under iron-depleted conditions. The expression of pL24 was also downregulated after iron depletion. The leptospiral major OMP LipL32 was observed to undergo substantial cleavage under all conditions except iron depletion. Additionally, significant downregulation of these mass forms was observed under iron limitation at 30°C, but not at 30°C alone, suggesting that LipL32 processing is dependent on iron-regulated extracellular proteases. However, separate cleavage products responded differently to changes in growth temperature and medium constituents, indicating that more than one process may be involved in LipL32 processing. Furthermore, under iron-depleted conditions there was no concomitant increase in the levels of the intact form of LipL32. The temperature- and iron-regulated expression of LipL36 and the iron-dependent cleavage of LipL32 were confirmed by immunoblotting with specific antisera. Global analysis of the cellular location and expression of leptospiral proteins will be useful in the annotation of genomic sequence data and in providing insight into the biology of Leptospira.


Infection and Immunity | 2005

Surfaceome of Leptospira spp.

Paul A. Cullen; James Matsunaga; Yolanda Sanchez; Albert I. Ko; David A. Haake; Ben Adler

ABSTRACT The identification of the subset of outer membrane proteins exposed on the surface of a bacterial cell (the surfaceome) is critical to understanding the interactions of bacteria with their environments and greatly narrows the search for protective antigens of extracellular pathogens. The surfaceome of Leptospira was investigated by biotin labeling of viable leptospires, affinity capture of the biotinylated proteins, two-dimensional gel electrophoresis, and mass spectrometry (MS). The leptospiral surfaceome was found to be predominantly made up of a small number of already characterized proteins, being in order of relative abundance on the cell surface: LipL32 > LipL21 > LipL41. Of these proteins, only LipL32 had not been previously identified as surface exposed. LipL32 surface exposure was subsequently verified by three independent approaches: surface immunofluorescence, whole-cell enzyme-linked immunosorbent assay (ELISA), and immunoelectron microscopy. Three other proteins, Q8F8Q0 (a putative transmembrane outer membrane protein) and two proteins of 20 kDa and 55 kDa that could not be identified by MS, one of which demonstrated a high degree of labeling potentially representing an additional, as-yet-uncharacterized, surface-exposed protein. Minor labeling of p31LipL45, GroEL, and FlaB1 was also observed. Expression of the surfaceome constituents remained unchanged under a range of conditions investigated, including temperature and the presence of serum or urine. Immunization of mice with affinity-captured surface components stimulated the production of antibodies that bound surface proteins from heterologous leptospiral strains. The surfaceomics approach is particularly amenable to protein expression profiling using small amounts of sample (<107 cells) offering the potential to analyze bacterial surface expression during infection.


Infection and Immunity | 2008

LipL32 is an extracellular matrix-interacting protein of Leptospira spp. and Pseudoalteromonas tunicata

David E. Hoke; Suhelen Egan; Paul A. Cullen; Ben Adler

ABSTRACT LipL32 is the major outer membrane protein in pathogenic Leptospira. It is highly conserved throughout pathogenic species and is expressed in vivo during human infection. While these data suggest a role in pathogenesis, a function for LipL32 has not been defined. Outer membrane proteins of gram-negative bacteria are the first line of molecular interaction with the host, and many have been shown to bind host extracellular matrix (ECM). A search for leptospiral ECM-interacting proteins identified the major outer membrane protein, LipL32. To verify this finding, recombinant LipL32 was expressed in Escherichia coli and was found to bind Matrigel ECM and individual components of ECM, including laminin, collagen I, and collagen V. Likewise, an orthologous protein found in the genome of Pseudoalteromonas tunicata strain D2 was expressed and found to be functionally similar and immunologically cross-reactive. Lastly, binding activity was mapped to the C-terminal 72 amino acids. These studies show that LipL32 and an orthologous protein in P. tunicata are immunologically cross-reactive and function as ECM-interacting proteins via a conserved C-terminal region.


Infection and Immunity | 2003

LipL21 is a novel surface-exposed lipoprotein of pathogenic Leptospira species.

Paul A. Cullen; David A. Haake; Dieter M. Bulach; Richard L. Zuerner; Ben Adler

ABSTRACT Leptospira is the etiologic agent of leptospirosis, a bacterial zoonosis distributed worldwide. Leptospiral lipopolysaccharide is a protective immunogen, but the extensive serological diversity of leptospires has inspired a search for conserved outer membrane proteins (OMPs) that may stimulate heterologous immunity. Previously, a global analysis of leptospiral OMPs (P. A. Cullen, S. J. Cordwell, D. M. Bulach, D. A. Haake, and B. Adler, Infect. Immun. 70:2311-2318, 2002) identified pL21, a novel 21-kDa protein that is the second most abundant constituent of the Leptospira interrogans serovar Lai outer membrane proteome. In this study, we identified the gene encoding pL21 and found it to encode a putative lipoprotein; accordingly, the protein was renamed LipL21. Southern hybridization analysis revealed the presence of lipL21 in all of the pathogenic species but in none of the saprophytic species examined. Alignment of the LipL21 sequence from six strains of Leptospira revealed 96 to 100% identity. When specific polyclonal antisera to recombinant LipL21 were used, LipL21 was isolated together with other known leptospiral OMPs by both Triton X-114 extraction and sucrose density gradient membrane fractionation. All nine strains of pathogenic leptospires investigated by Western blotting, whether culture attenuated or virulent, were found to express LipL21. In contrast, the expression of LipL21 or an antigenically related protein could not be detected in nonpathogenic L. biflexa. Infected hamster sera and two of eight human leptospirosis sera tested were found to react with recombinant LipL21. Native LipL21 was found to incorporate tritiated palmitic acid, consistent with the prediction of a lipoprotein signal peptidase cleavage site. Biotinylation of the leptospiral surface resulted in selective labeling of LipL21 and the previously known OMPs LipL32 and LipL41. These findings show that LipL21 is a surface-exposed, abundant outer membrane lipoprotein that is expressed during infection and conserved among pathogenic Leptospira species.


Journal of Proteome Research | 2009

Global Proteome Analysis of Leptospira interrogans

Azad Eshghi; Paul A. Cullen; Laura Cowen; Richard L. Zuerner

Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometry complemented with two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry. A total of 563 proteins were identified in this study. Altered expression of 65 proteins, including upregulation of the L. interrogans virulence factor Loa22 and 5 novel proteins with homology to virulence factors found in other pathogens, was observed between the comparative conditions. Immunoblot analyses confirmed upregulation of 5 of the known or putative virulence factors in L. interrogans exposed to the in vivo-like environmental conditions. Further, ELISA analyses using serum from patients with leptospirosis and immunofluorescence studies performed on liver sections derived from L. interrogans-infected hamsters verified expression of all but one of the identified proteins during infection. These studies, which represent the first documented comparative global proteome analysis of Leptospira, demonstrated proteome alterations under conditions that mimic in vivo infection and allowed for the identification of novel putative L. interrogans virulence factors.


Plasmid | 2003

Construction and evaluation of a plasmid vector for the expression of recombinant lipoproteins in Escherichia coli.

Paul A. Cullen; Miranda Lo; Dieter M. Bulach; Stuart J. Cordwell; Ben Adler

Outer membrane lipoproteins are emerging as key targets for protective immunity to many bacterial pathogens. Heterologous expression of lipoproteins in Escherichia coli does not always result in high level expression of acylated recombinant protein. Thus, these proteins do not take up their correct membrane topology and are lacking the immunostimulatory properties endowed by the lipid. To this end, we have designed a lipoprotein expression vector (pDUMP) that results in the production of fusion proteins containing the E. coli major outer membrane lipoprotein (Lpp) signal sequence, lipoprotein signal peptidase recognition site, and the +2 outer membrane sorting signal at their N termini. To test the ability of pDUMP to express lipoproteins from heterologous hosts, the surface lipoprotein PsaA from the Gram-positive organism Streptococcus pneumoniae and the outer membrane lipoproteins MlpA from the Gram-negative Pasteurella multocida and BlpA from the spirochete Brachyspira hyodysenteriae were cloned into both hexahistidine fusion vectors and pDUMP. High level expression of antigenically active protein from both the hexahistidine fusion vectors and pDUMP resulted in abundant bands of the predicted molecular masses when analyzed by SDS-PAGE. When grown in the presence of 3[H]palmitic acid, proteins encoded by pDUMP were observed to incorporate palmitic acid whilst the hexahistidine fusion proteins did not. Using mass spectrometry and image analysis we determined the efficiency of lipidation between the three clones to vary from 31.7 to 100%. In addition, lipidated, but not hexahistidine, forms of the proteins were presented on the E. coli surface.


Vaccine | 2011

Recombinant LipL32 and LigA from Leptospira are unable to stimulate protective immunity against leptospirosis in the hamster model

Deanna Deveson Lucas; Paul A. Cullen; Miranda Lo; Amporn Srikram; Rasana W. Sermswan; Ben Adler

The major antigenic component of pathogenic Leptospira spp. is lipopolysaccharide (LPS). However, due to the specificity of the immune response generated towards LPS and the diversity in leptospiral LPS carbohydrate structure, current commercial vaccines stimulate protection only against homologous or closely related serovars. Vaccines that confer heterologous protection would enhance protection in vaccinated animals and reduce transmission to humans. Several studies have investigated the potential of various leptospiral outer membrane proteins to stimulate protective immunity against pathogenic Leptospira species. These include the surface-exposed lipoproteins LipL32 and LigA. However, consistent protection from infection has proved difficult to reproduce. In this study we assessed the protective capacity of recombinant LipL32, the six carboxy-terminal unique Ig-like repeat domains of LigA (LigANI) and a LipL32-LigANI fusion protein in hamsters against infection with Leptospira interrogans serovar Manilae. Despite all of the proteins eliciting antibody responses, none of the hamsters was protected against infection.


Emerging Infectious Diseases | 2004

Genomic-scale analysis of bacterial gene and protein expression in the host.

John D. Boyce; Paul A. Cullen; Ben Adler

DNA microarrays and proteomics are used to study bacterial gene and protein expression during infections.


Microbes and Infection | 2003

Characterization of a locus encoding four paralogous outer membrane lipoproteins of Brachyspira hyodysenteriae

Paul A. Cullen; Scott Coutts; Stuart J. Cordwell; Dieter M. Bulach; Ben Adler

The identification of Brachyspira hyodysenteriae outer membrane proteins (OMPs) that may stimulate immunity to swine dysentery is important for vaccine development. We report here the analysis of a novel locus, blpGFEA, encoding four tandem paralogous proteins of approximately 30 kDa from B. hyodysenteriae. The four proteins share 31-39% sequence identity with lipoproteins from several species of bacterial pathogens, but the locus possesses a unique genetic organization. Using antisera raised to recombinant versions of each of these proteins, only BlpA and BlpE were found to be immunologically cross-reactive with the other proteins encoded by the locus. Northern hybridization indicated that only blpA was expressed under in vitro growth conditions. In addition, convalescent swine serum recognized recombinant BlpA in immunoblotting experiments, demonstrating that it is also expressed during infection. Analysis of the translated sequences of each of the genes revealed atypical spirochetal signal peptidase II recognition sites, and BlpA was shown to be a lipoprotein by incorporation of tritiated palmitic acid. Native BlpA was completely extracted by Triton X-114 (TX-114) and partitioned exclusively into the detergent phase during extraction of whole B. hyodysenteriae cells, implicating it as a component of the brachyspiral outer membrane. Consistent with the transcriptional and immunological data, analysis of the brachyspiral outer membrane proteome also revealed expression of only BlpA. Notably, inactivation of blpA homologs in Haemophilus influenzae and Salmonella enteritidis resulted in attenuation of virulence.

Collaboration


Dive into the Paul A. Cullen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Haake

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard L. Zuerner

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miranda Lo

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David P. Alt

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Diana G. Adlowitz

State University of New York System

View shared research outputs
Researchain Logo
Decentralizing Knowledge