Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Dube is active.

Publication


Featured researches published by Paul A. Dube.


Journal of the American Chemical Society | 2012

Iron nanoparticles catalyzing the asymmetric transfer hydrogenation of ketones.

Jessica F. Sonnenberg; Neil Coombs; Paul A. Dube; Robert H. Morris

Investigation into the mechanism of transfer hydrogenation using trans-[Fe(NCMe)CO(PPh(2)C(6)H(4)CH═NCHR-)(2)][BF(4)](2), where R = H (1) or R = Ph (2) (from R,R-dpen), has led to strong evidence that the active species in catalysis are iron(0) nanoparticles (Fe NPs) functionalized with achiral (with 1) and chiral (with 2) PNNP-type tetradentate ligands. Support for this proposition is given in terms of in operando techniques such as a kinetic investigation of the induction period during catalysis as well as poisoning experiments using substoichiometric amounts of various poisoning agents. Further support for the presence of Fe(0) NPs includes STEM microscopy imaging with EDX analysis, XPS analysis, and SQUID magnetometry analysis of catalytic solutions. Further evidence of Fe NPs acting as the active catalyst is given in terms of a polymer-supported substrate experiment whereby the NPs are too large to permeate the pores of a functionalized polymer. Final support is given in terms of a combined poisoning/STEM/EDX experiment whereby the poisoning agent is shown to be bound to the Fe NPs. This paper provides evidence of a rare example of asymmetric catalysis with nonprecious metal, zerovalent nanoparticles.


Journal of the American Chemical Society | 2010

Hysteretic spin crossover between a bisdithiazolyl radical and its hypervalent σ-dimer.

Kristina Lekin; Stephen M. Winter; L. E. Downie; Xuezhao Bao; John S. Tse; Serge Desgreniers; Richard A. Secco; Paul A. Dube; Richard T. Oakley

The bisdithiazolyl radical 1a is dimorphic, existing in two distinct molecular and crystal modifications. The α-phase crystallizes in the tetragonal space group P4̅2(1)m and consists of π-stacked radicals, tightly clustered about 4̅ points and running parallel to c. The β-phase belongs to the monoclinic space group P2(1)/c and, at ambient temperature and pressure, is composed of π-stacked dimers in which the radicals are linked laterally by hypervalent four-center six-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility χ measurements confirm that α-1a behaves as a Curie-Weiss paramagnet; the low-temperature variations in χ can be modeled in terms of a 1D Heisenberg chain of weakly coupled AFM S = (1)/(2) centers. The dimeric phase β-1a is essentially diamagnetic up to 380 K. Above this temperature there is a sharp hysteretic (T↑= 380 K, T↓ = 375 K) increase in χ and χT. Powder X-ray diffraction analysis of β-1a at 393 K has established that the phase transition corresponds to a dimer-to-radical conversion in which the hypervalent S···S-S···S σ-bond is cleaved. Variable-temperature and -pressure conductivity measurements indicate that α-1a behaves as a Mott insulator, but the ambient-temperature conductivity σ(RT) increases from near 10(-7) S cm(-1) at 0.5 GPa to near 10(-4) S cm(-1) at 5 GPa. The value of σ(RT) for β-1a (near 10(-4) S cm(-1) at 0.5 GPa) initially decreases with pressure as the phase change takes place, but beyond 1.5 GPa this trend reverses, and σ(RT) increases in a manner which parallels the behavior of α-1a. These changes in conductivity of β-1a are interpreted in terms of a pressure-induced dimer-to-radical phase change. High-pressure, ambient-temperature powder diffraction analysis of β-1a confirms such a transition between 0.65 and 0.98 GPa and establishes that the structural change involves rupture of the dimer in a manner akin to that observed at high temperature and ambient pressure. The response of the S···S-S···S σ-bond in β-1a to heat and pressure is compared to that of related dimers possessing S···Se-Se···S σ-bonds.


Journal of the American Chemical Society | 2011

From Magnets to Metals: The Response of Tetragonal Bisdiselenazolyl Radicals to Pressure

Alicea A. Leitch; Kristina Lekin; Stephen M. Winter; L. E. Downie; H. Tsuruda; John S. Tse; Masaki Mito; Serge Desgreniers; Paul A. Dube; S. Zhang; Q. Liu; Changqing Jin; Yasuo Ohishi; Richard T. Oakley

The bromo-substituted bisdiselenazolyl radical 4b (R(1) = Et, R(2) = Br) is isostructural with the corresponding chloro-derivative 4a (R(1) = Et, R(2) = Cl), both belonging to the tetragonal space group P(4)2(1)m and consisting of slipped π-stack arrays of undimerized radicals. Variable temperature, ambient pressure conductivity measurements indicate a similar room temperature conductivity near 10(-4) S cm(-1) for the two compounds, but 4b displays a slightly higher thermal activation energy E(act) (0.23 eV) than 4a (0.19 eV). Like 4a, radical 4b behaves as a bulk ferromagnet with an ordering temperature of T(C) = 17.5 K. The coercive field H(c) (at 2 K) of 1600 Oe for 4b is, however, significantly greater than that observed for 4a (1370 Oe). High pressure (0-15 GPa) structural studies on both compounds have shown that compression reduces the degree of slippage of the π-stacks, which gives rise to changes in the magnetic and conductive properties of the radicals. Relatively mild loadings (<2 GPa) cause an increase in T(C) for both compounds, that of 4b reaching a maximum value of 24 K; further compression to 5 GPa leads to a decrease in T(C) and loss of magnetization. Variable temperature and pressure conductivity measurements indicate a decrease in E(act) with increasing pressure, with eventual conversion of both compounds from a Mott insulating state to one displaying weakly metallic behavior in the region of 7 GPa (for 4a) and 9 GPa (for 4b).


Journal of the American Chemical Society | 2012

Semiquinone-Bridged Bisdithiazolyl Radicals as Neutral Radical Conductors

Xin Yu; Aaron Mailman; Kristina Lekin; Abdeljalil Assoud; Craig M. Robertson; Bruce C. Noll; Charles F. Campana; Judith A. K. Howard; Paul A. Dube; Richard T. Oakley

Semiquinone-bridged bisdithiazolyls 3 represent a new class of resonance-stabilized neutral radical for use in the design of single-component conductive materials. As such, they display electrochemical cell potentials lower than those of related pyridine-bridged bisdithiazolyls, a finding which heralds a reduced on-site Coulomb repulsion U. Crystallographic characterization of the chloro-substituted derivative 3a and its acetonitrile solvate 3a·MeCN, both of which crystallize in the polar orthorhombic space group Pna2(1), revealed the importance of intermolecular oxygen-to-sulfur (CO···SN) interactions in generating rigid, tightly packed radical π-stacks, including the structural motif found for 3a·MeCN in which radicals in neighboring π-stacks are locked into slipped-ribbon-like arrays. This architecture gives rise to strong intra- and interstack overlap and hence a large electronic bandwidth W. Variable-temperature conductivity measurements on 3a and 3a·MeCN indicated high values of σ(300 K) (>10(-3) S cm(-1)) with correspondingly low thermal activation energies E(act), reaching 0.11 eV in the case of 3a·MeCN. Overall, the strong performance of these materials as f = ½ conductors is attributed to a combination of low U and large W. Variable-temperature magnetic susceptibility measurements were performed on both 3a and 3a·MeCN. The unsolvated material 3a orders as a spin-canted antiferromagnet at 8 K, with a canting angle φ = 0.14° and a coercive field H(c) = 80 Oe at 2 K.


Journal of the American Chemical Society | 2012

Crossing the Insulator-to-Metal Barrier with a Thiazyl Radical Conductor

Aaron Mailman; Stephen M. Winter; Xin Yu; Craig M. Robertson; Wenjun Yong; John S. Tse; Richard A. Secco; Zhenxian Liu; Paul A. Dube; Judith A. K. Howard; Richard T. Oakley

The layered-sheet architecture of the crystal structure of the fluoro-substituted oxobenzene-bridged bisdithiazolyl radical FBBO affords a 2D π-electronic structure with a large calculated bandwidth. The material displays high electrical conductivity for a f = 1/2 system, with σ(300 K) = 2 × 10(-2) S cm(-1). While the conductivity is thermally activated at ambient pressure, with E(act) = 0.10 eV at 300 K, indicative of a Mott insulating state, E(act) is eliminated at 3 GPa, suggesting the formation of a metallic state. The onset of metallization is supported by infrared measurements, which show closure of the Mott-Hubbard gap above 3 GPa.


Inorganic Chemistry | 2009

Preparation and Magnetic Properties of Iron(3+) Spin-Crossover Complexes Bearing a Thiophene Substituent: Toward Multifunctional Metallopolymers

Brandon Djukic; Paul A. Dube; F. S. Razavi; Takele Seda; Hilary A. Jenkins; James F. Britten; Martin T. Lemaire

The synthesis of a new 3-ethynylthienyl-substituted QsalH ligand (QsalH is the short form for N-(8-quinolyl)salicylaldimine) (ThEQsalH 3), and the preparation, electronic, and magnetic properties of three homoleptic and cationic iron(3+) complexes containing this ligand with PF(6)(-) 4, SCN(-) 5, and ClO(4)(-) 6 counteranions are reported. In all three complexes a spin-crossover is observed in the solid state by variable temperature magnetic susceptibility measurements and Mossbauer spectroscopy, indicating that the synthetic modification of the QsalH ligand has not significantly altered the electronics at the metal center. This includes the observation of a very rare S = 5/2 to 3/2 spin-crossover in a non-porphyrin iron(3+) complex 5. The molecular structure and magnetic properties of an unusual iron(2+) complex 7 generated by reduction of complex 6 serendipitously during a recrystallization attempt in aerobic acetone solution is also reported. Complexes 4-6 feature iron(3+) reduction and oxidation of the thiophene ring at potentials of approximately -0.7 and +1.2 V (vs Fc), respectively.


Journal of the American Chemical Society | 2014

Heat, Pressure and Light-Induced Interconversion of Bisdithiazolyl Radicals and Dimers

Kristina Lekin; Hoa Phan; Stephen M. Winter; Joanne W. L. Wong; Alicea A. Leitch; Dominique Laniel; Wenjun Yong; Richard A. Secco; John S. Tse; Serge Desgreniers; Paul A. Dube; Michael Shatruk; Richard T. Oakley

The heterocyclic bisdithiazolyl radical 1b (R1 = Me, R2 = F) crystallizes in two phases. The α-phase, space group P2₁/n, contains two radicals in the asymmetric unit, both of which adopt slipped π-stack structures. The β-phase, space group P2₁/c, consists of cross-braced π-stacked arrays of dimers in which the radicals are linked laterally by hypervalent 4-center 6-electron S···S-S···S σ-bonds. Variable-temperature magnetic susceptibility measurements on α-1b indicate Curie-Weiss behavior (with Θ = -14.9 K), while the dimer phase β-1b is diamagnetic, showing no indication of thermal dissociation below 400 K. High-pressure crystallographic measurements indicate that the cross-braced π-stacked arrays of dimers undergo a wine-rack compression, but the dimer remains intact up to 8 GPa (at ambient temperature). The resistance of β-1b to dissociate under pressure, also observed in its conductivity versus pressure profile, is in marked contrast to the behavior of the related dimer β-1a (R1 = Et, R2 = F), which readily dissociates into a pair of radicals at 0.8 GPa. The different response of the two dimers to pressure has been rationalized in terms of differences in their linear compressibilities occasioned by changes in the degree of cross-bracing of the π-stacks. Dissociation of both dimers can be effected by irradiation with visible (λ = 650 nm) light; the transformation has been monitored by optical spectroscopy, magnetic susceptibility measurements, and single crystal X-ray diffraction. The photoinduced radical pairs persist up to temperatures of 150 K (β-1b) and 242 K (β-1a) before reverting to the dimer state. Variable-temperature optical measurements on β-1b and β-1a have afforded Arrhenius activation energies of 8.3 and 19.6 kcal mol(-1), respectively, for the radical-to-dimer reconversion. DFT and CAS-SCF calculations have been used to probe the ground and excited electronic state structures of the dimer and radical pair. The results support the interpretation that the ground-state interconversion of the dimer and radical forms of β-1a and β-1b is symmetry forbidden, while the photochemical transformation is symmetry allowed.


Journal of the American Chemical Society | 2015

Multiple orbital effects and magnetic ordering in a neutral radical.

Aaron Mailman; Stephen M. Winter; Joanne W. L. Wong; Craig M. Robertson; Abdeljalil Assoud; Paul A. Dube; Richard T. Oakley

The alternating ABABAB π-stacked architecture of the EtCN solvate of the iodo-substituted, oxobenzene-bridged bisdithiazolyl radical IBBO (space group Pnma) gives rise to strong ferromagnetic exchange along the π-stacks, and the material orders as a spin-canted antiferromagnet with T(N) = 35 K, with a spontaneous (canted) moment M(spont) = 1.4 × 10(-3) μB and a coercive field H(c) = 1060 Oe (at 2 K). The observation of spin-canting can only be understood in terms of multiorbital contributions to both isotropic and anisotropic exchange interactions, the magnitude of which are enhanced by spin-orbit effects arising from the heavy-atom iodine substituent. Pseudodipolar interactions lead to a net canted moment along the c-axis, while the sublattice magnetization is predicted to possess an easy a-axis.


Chemical Communications | 2007

Spin-canting in heavy atom heterocyclic radicals

Alicea A. Leitch; Jaclyn L. Brusso; Kristina Cvrkalj; Robert W. Reed; Craig M. Robertson; Paul A. Dube; Richard T. Oakley

A pair of isostructural bis-selenathiazolyl and bis-diselenazolyl radical conductors display weak (spin-canted) ferromagnetism with Tc values of 18 K and 27 K respectively.


Journal of the American Chemical Society | 2017

Fine Tuning the Performance of Multiorbital Radical Conductors by Substituent Effects

Aaron Mailman; Joanne W. L. Wong; Stephen M. Winter; Robert C. M. Claridge; Craig M. Robertson; Abdeljalil Assoud; Wenjun Yong; Eden Steven; Paul A. Dube; John S. Tse; Serge Desgreniers; Richard A. Secco; Richard T. Oakley

A critical feature of the electronic structure of oxobenzene-bridged bisdithiazolyl radicals 2 is the presence of a low-lying LUMO which, in the solid state, improves charge transport by providing additional degrees of freedom for electron transfer. The magnitude of this multiorbital effect can be fine-tuned by variations in the π-electron releasing/accepting nature of the basal ligand. Here we demonstrate that incorporation of a nitro group significantly stabilizes the LUMO, and hence lowers Ueff, the effective Coulombic barrier to charge transfer. The effect is echoed, at the molecular level, in the observed trend in Ecell, the electrochemical cell potential for 2 with R = F, H and NO2. The crystal structures of the MeCN and EtCN solvates of 2 with R = NO2 have been determined. In the EtCN solvate the radicals are dimerized, but in the MeCN solvate the radicals form superimposed and evenly spaced π-stacked arrays. This highly 1D material displays Pauli-like temperature independent paramagnetic behavior, with χTIP = 6 × 10-4 emu mol-1, but its charge transport behavior, with σRT near 0.04 S cm-1 and Eact = 0.05 eV, is more consistent with a Mott insulating ground state. High pressure crystallographic measurements confirm uniform compression of the π-stacked architecture with no phase change apparent up to 8 GPa. High pressure conductivity measurements indicate that the charge gap between the Mott insulator and metallic states can be closed near 6 GPa. These results are discussed in the light of DFT band structure calculations.

Collaboration


Dive into the Paul A. Dube's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Tse

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge