Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul A. Marks is active.

Publication


Featured researches published by Paul A. Marks.


Nature Reviews Cancer | 2001

Histone deacetylases and cancer: causes and therapies

Paul A. Marks; Richard A. Rifkind; Victoria M. Richon; Ronald Breslow; Thomas E. Miller; William Kevin Kelly

Together, histone acetyltransferases and histone deacetylases (HDACs) determine the acetylation status of histones. This acetylation affects the regulation of gene expression, and inhibitors of HDACs have been found to cause growth arrest, differentiation and/or apoptosis of many tumours cells by altering the transcription of a small number of genes. HDAC inhibitors are proving to be an exciting therapeutic approach to cancer, but how do they exert this effect?


Nature | 1999

Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors.

Michael S. Finnin; Jill R. Donigian; Alona Cohen; Victoria M. Richon; Richard A. Rifkind; Paul A. Marks; Ronald Breslow; Nikola P. Pavletich

Histone deacetylases (HDACs) mediate changes in nucleosome conformation and are important in the regulation of gene expression. HDACs are involved in cell-cycle progression and differentiation, and their deregulation is associated with several cancers. HDAC inhibitors, such as trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), have anti-tumour effects, as they can inhibit cell growth, induce terminal differentiation and prevent the formation of tumours in mice models, and they are effective in the treatment of promyelocytic leukemia. Here we describe the structure of the histone deacetylase catalytic core, as revealed by the crystal structure of a homologue from the hyperthermophilic bacterium Aquifex aeolicus, that shares 35.2% identity with human HDAC1 over 375 residues, deacetylates histones in vitro and is inhibited by TSA and SAHA. The deacetylase, deacetylase–TSA and deacetylase–SAHA structures reveal an active site consisting of a tubular pocket, a zinc-binding site and two Asp–His charge-relay systems, and establish the mechanism of HDAC inhibition. The residues that make up the active site and contact the inhibitors are conserved across the HDAC family. These structures also suggest a mechanism for the deacetylation reaction and provide a framework for the further development of HDAC inhibitors as anti-tumour agents.


Oncogene | 2007

Histone deacetylase inhibitors: molecular mechanisms of action

Weisheng Xu; Raphael B. Parmigiani; Paul A. Marks

This review focuses on the mechanisms of action of histone deacetylase (HDAC) inhibitors (HDACi), a group of recently discovered ‘targeted’ anticancer agents. There are 18 HDACs, which are generally divided into four classes, based on sequence homology to yeast counterparts. Classical HDACi such as the hydroxamic acid-based vorinostat (also known as SAHA and Zolinza) inhibits classes I, II and IV, but not the NAD+-dependent class III enzymes. In clinical trials, vorinostat has activity against hematologic and solid cancers at doses well tolerated by patients. In addition to histones, HDACs have many other protein substrates involved in regulation of gene expression, cell proliferation and cell death. Inhibition of HDACs causes accumulation of acetylated forms of these proteins, altering their function. Thus, HDACs are more properly called ‘lysine deacetylases.’ HDACi induces different phenotypes in various transformed cells, including growth arrest, activation of the extrinsic and/or intrinsic apoptotic pathways, autophagic cell death, reactive oxygen species (ROS)-induced cell death, mitotic cell death and senescence. In comparison, normal cells are relatively more resistant to HDACi-induced cell death. The plurality of mechanisms of HDACi-induced cell death reflects both the multiple substrates of HDACs and the heterogeneous patterns of molecular alterations present in different cancer cells.


Nature Biotechnology | 2007

Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug

Paul A. Marks; Ronald Breslow

In our quest to understand why dimethyl sulfoxide (DMSO) can cause growth arrest and terminal differentiation of transformed cells, we followed a path that led us to discover suberoylanilide hydroxamic acid (SAHA; vorinostat (Zolinza)), which is a histone deacetylase inhibitor. SAHA reacts with and blocks the catalytic site of these enzymes. Extensive structure-activity studies were done along the path from DMSO to SAHA. SAHA can cause growth arrest and death of a broad variety of transformed cells both in vitro and in tumor-bearing animals at concentrations not toxic to normal cells. SAHA has many protein targets whose structure and function are altered by acetylation, including chromatin-associated histones, nonhistone gene transcription factors and proteins involved in regulation of cell proliferation, migration and death. In clinical trials, SAHA has shown significant anticancer activity against both hematologic and solid tumors at doses well tolerated by patients. A new drug application was approved by the US Food and Drug Administration for vorinostat for treatment of cutaneous T-cell lymphoma. More potent analogs of SAHA have shown unacceptable toxicity.


Molecular Cancer Research | 2007

Histone Deacetylase Inhibitors: Overview and Perspectives

Milos Dokmanovic; Cathy Clarke; Paul A. Marks

Histone deacetylase inhibitors (HDACi) comprise structurally diverse compounds that are a group of targeted anticancer agents. The first of these new HDACi, vorinostat (suberoylanilide hydroxamic acid), has received Food and Drug Administration approval for treating patients with cutaneous T-cell lymphoma. This review focuses on the activities of the 11 zinc-containing HDACs, their histone and nonhistone protein substrates, and the different pathways by which HDACi induce transformed cell death. A hypothesis is presented to explain the relative resistance of normal cells to HDACi-induced cell death. (Mol Cancer Res 2007;5(10):981–9)


Proceedings of the National Academy of Sciences of the United States of America | 2003

Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease

Emma Hockly; V M Richon; Benjamin Woodman; Donna L. Smith; X B Zhou; E Rosa; Kirupa Sathasivam; Shabnam Ghazi‐Noori; Amarbirpal Mahal; Philip A. S. Lowden; Joan S. Steffan; J L Marsh; Leslie M. Thompson; Cathryn M. Lewis; Paul A. Marks; Gillian P. Bates

Huntingtons disease (HD) is an inherited, progressive neurological disorder that is caused by a CAG/polyglutamine repeat expansion and for which there is no effective therapy. Recent evidence indicates that transcriptional dysregulation may contribute to the molecular pathogenesis of this disease. Supporting this view, administration of histone deacetylase (HDAC) inhibitors has been shown to rescue lethality and photoreceptor neurodegeneration in a Drosophila model of polyglutamine disease. To further explore the therapeutic potential of HDAC inhibitors, we have conducted preclinical trials with suberoylanilide hydroxamic acid (SAHA), a potent HDAC inhibitor, in the R6/2 HD mouse model. We show that SAHA crosses the blood–brain barrier and increases histone acetylation in the brain. We found that SAHA could be administered orally in drinking water when complexed with cyclodextrins. SAHA dramatically improved the motor impairment in R6/2 mice, clearly validating the pursuit of this class of compounds as HD therapeutics.


Journal of Cellular Biochemistry | 2009

Histone deacetylase inhibitors: Potential in cancer therapy

Paul A. Marks; W.-S. Xu

The role of histone deacetylases (HDAC) and the potential of these enzymes as therapeutic targets for cancer, neurodegenerative diseases and a number of other disorders is an area of rapidly expanding investigation. There are 18 HDACs in humans. These enzymes are not redundant in function. Eleven of the HDACs are zinc dependent, classified on the basis of homology to yeast HDACs: Class I includes HDACs 1, 2, 3, and 8; Class IIA includes HDACs 4, 5, 7, and 9; Class IIB, HDACs 6 and 10; and Class IV, HDAC 11. Class III HDACs, sirtuins 1–7, have an absolute requirement for NAD+, are not zinc dependent and generally not inhibited by compounds that inhibit zinc dependent deacetylases. In addition to histones, HDACs have many nonhistone protein substrates which have a role in regulation of gene expression, cell proliferation, cell migration, cell death, and angiogenesis. HDAC inhibitors (HDACi) have been discovered of different chemical structure. HDACi cause accumulation of acetylated forms of proteins which can alter their structure and function. HDACi can induce different phenotypes in various transformed cells, including growth arrest, apoptosis, reactive oxygen species facilitated cell death and mitotic cell death. Normal cells are relatively resistant to HDACi induced cell death. Several HDACi are in various stages of development, including clinical trials as monotherapy and in combination with other anti‐cancer drugs and radiation. The first HDACi approved by the FDA for cancer therapy is suberoylanilide hydroxamic acid (SAHA, vorinostat, Zolinza), approved for treatment of cutaneous T‐cell lymphoma. J. Cell. Biochem. 107: 600–608, 2009.


Oncogene | 2007

Discovery and development of SAHA as an anticancer agent

Paul A. Marks

The path to the discovery of suberoylanilide hydroxamic acid (SAHA, vorinostat) began over three decades ago with our studies designed to understand why dimethylsulfoxide causes terminal differentiation of the virus-transformed cells, murine erythroleukemia cells. SAHA can cause growth arrest and death of a broad variety of transformed cells both in vitro and in vivo at concentrations that have little or no toxic effects on normal cells. It was discovered that SAHA inhibits the activity of histone deacetylases (HDACs), including all 11 known human class I and class II HDACs. HDACs have many protein targets whose structure and function are altered by acetylation including histones and non-histone proteins component of transcription factors controlling gene expression and proteins that regulate cell proliferation, migration and death. SAHA is in clinical trials and has significant anticancer activity against both hematologic and solid tumors at doses well tolerated by patients. A new drug application has been approved for SAHA (vorinostat) treatment of cutaneous T-cell lymphoma.


Journal of Cellular Biochemistry | 2005

Prospects: Histone deacetylase inhibitors

Milos Dokmanovic; Paul A. Marks

Histone deacetylase (HDAC), inhibitors represent a new class of targeted anti‐cancer agents. Several of these compounds are in clinical trials with significant activity against a spectrum of both hematologic and solid tumors at doses that are well tolerated by the patients. The HDAC inhibitors are a structurally diverse group of molecules that can induce growth arrest, differentiation, apoptosis, and autophagocytic cell death of cancer cells. While the base sequence of DNA provides the genetic code for proteins, the expression of genes is regulated, in large part, by the structure of the chromatin proteins around which the DNA is wrapped (epigenetic gene regulation). The acetylation and deacetylation of the lysines in the tails of the core histones, among the most extensively studied aspects of chromatin structure, is controlled by the action of two families of enzymes, histone deacetylases (HDACs) and histone acetyltransferases (HATs). Protein components of transcription factor complexes and many other non‐histone proteins are also substrates for HDACs and HATs. The structure and activity of these non‐histone proteins may be altered by acetylation/deacetylation with consequent effects on various cell functions including gene expression, cell cycle progression, and cell death pathways. This review focuses on several key questions with respect to the mechanism of action of HDACi, including, what are the different cell phenotypes induced by HDACi, why are normal cells compared to transformed cells relatively resistant to HDACi induced cell death, why are certain tumors more responsive to HDACi than others, and what is the basis of the selectivity of HDACi in altering gene expression. The answers to these questions will have therapeutic importance since we will identify targets for enhancing the efficacy and safety of HDACi.


Nature Reviews Clinical Oncology | 2005

Drug Insight: histone deacetylase inhibitors—development of the new targeted anticancer agent suberoylanilide hydroxamic acid

William Kevin Kelly; Paul A. Marks

This review focuses on the discovery and development of the histone deacetylase (HDAC) inhibitor, suberoylanilide hydroxamic acid (SAHA). Post-translational modifications of the histones of chromatin are important factors in regulating gene expression—so-called epigenetic gene regulation. Acetylation and deacetylation of lysine residues in histone tails, controlled by the activities of HDACs and histone acetyltransferases, are among the most studied post-translational modification of histones. In addition to chromatin protein, transcription factors, cell-signaling regulatory proteins, and proteins regulating cell death are substrates of HDACs and may be altered in function by HDAC inhibitors. HDAC inhibitors have several remarkable aspects. For instance, despite HDACs being ubiquitously distributed through chromatin, SAHA selectively alters the transcription of relatively few genes, and normal cells are at least 10-fold more resistant than transformed cells to SAHA and related HDAC inhibitor-induced cell death. HDAC inhibitors represent a relatively new group of targeted anticancer compounds, which are showing significant promise as agents with activity against a broad spectrum of neoplasms, at doses that are well tolerated by cancer patients. SAHA is one of the HDAC inhibitors most advanced in development. It is in phase I and II clinical trials for patients with both hematologic and solid tumors.

Collaboration


Dive into the Paul A. Marks's collaboration.

Top Co-Authors

Avatar

Richard A. Rifkind

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Lang Ngo

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weisheng Xu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ju-Hee Lee

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Megan L. Choy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michael Sheffery

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gisela Venta-Perez

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge