Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul B. Hatzinger is active.

Publication


Featured researches published by Paul B. Hatzinger.


Environmental Science & Technology | 1995

Effect of aging of chemicals in soil on their biodegradability and extractability

Paul B. Hatzinger; Martin Alexander

A study was conducted to determine whether the time that a compound remains in a soil affects its biodegradability and the ease of its extraction. Phenanthrene and 4-nitrophenol were aged in sterilized loam and muck, and bacteria able to degrade the compounds were then added to the soils. increasingly smaller amounts of phenanthrene in the muck and 4-nitrophenol in both soils were mineralized with increasing duration of aging. Aging also increased the resistance of phenanthrene to biodegradation in nutrient-amended aquifer sand. The rate of miner- alization of the two compounds in both soils declined with increasing periods of aging. The amount of phenanthrene and 4-nitrophenol added to sterile soils that was recovered by butanol extraction declined with duration of aging, but subsequent Soxhlet extraction recovered phenanthrene from the loam but not the muck. The extents of mineralization of phenanthrene previously incubated for up to 27 days with soluble or insoluble organic matter from the muck were similar. Less aged than freshly added phenanthrene was biodegraded if aggregates in the muck were sonically disrupted. The data show that phenanthrene and 4-nitrophenol added to soil become increasingly more resistant with time to biodegradation and extraction.


Applied and Environmental Microbiology | 2001

Biodegradation of Methyl tert-Butyl Ether by a Pure Bacterial Culture

Paul B. Hatzinger; Kevin McClay; Simon Vainberg; Marina Tugusheva; Charles W. Condee; Robert J. Steffan

ABSTRACT Biodegradation of methyl tert-butyl ether (MTBE) by the hydrogen-oxidizing bacterium Hydrogenophaga flavaENV735 was evaluated. ENV735 grew slowly on MTBE ortert-butyl alcohol (TBA) as sole sources of carbon and energy, but growth on these substrates was greatly enhanced by the addition of a small amount of yeast extract. The addition of H2 did not enhance or diminish MTBE degradation by the strain, and MTBE was only poorly degraded or not degraded by type strains of Hydrogenophaga or hydrogen-oxidizing enrichment cultures, respectively. MTBE degradation activity was constitutively expressed in ENV735 and was not greatly affected by formaldehyde, carbon monoxide, allyl thiourea, or acetylene. MTBE degradation was inhibited by 1-amino benzotriazole and butadiene monoepoxide. TBA degradation was inducible by TBA and was inhibited by formaldehyde at concentrations of >0.24 mM and by acetylene but not by the other inhibitors tested. These results demonstrate that separate, independently regulated genes encode MTBE and TBA metabolism in ENV735.


Environmental Science & Technology | 2010

Isotopic Composition and Origin of Indigenous Natural Perchlorate and Co-Occurring Nitrate in the Southwestern United States

W. Andrew Jackson; John Karl Böhlke; Baohua Gu; Paul B. Hatzinger; Neil C. Sturchio

Perchlorate (ClO(4)(-)) has been detected widely in groundwater and soils of the southwestern United States. Much of this ClO(4)(-) appears to be natural, and it may have accumulated largely through wet and dry atmospheric deposition. This study evaluates the isotopic composition of natural ClO(4)(-) indigenous to the southwestern U.S. Stable isotope ratios were measured in ClO(4)(-) (delta(18)O, Delta(17)O, delta(37)Cl) and associated NO(3)(-) (delta(18)O, Delta(17)O, delta(15)N) in groundwater from the southern High Plains (SHP) of Texas and New Mexico and the Middle Rio Grande Basin (MRGB) in New Mexico, from unsaturated subsoil in the SHP, and from NO(3)(-)-rich surface caliche deposits near Death Valley, California. The data indicate natural ClO(4)(-) in the southwestern U.S. has a wide range of isotopic compositions that are distinct from those reported previously for natural ClO(4)(-) from the Atacama Desert of Chile as well as all known synthetic ClO(4)(-). ClO(4)(-) in Death Valley caliche has a range of high Delta(17)O values (+8.6 to +18.4 per thousand), overlapping and extending the Atacama range, indicating at least partial atmospheric formation via reaction with ozone (O(3)). However, the Death Valley delta(37)Cl values (-3.1 to -0.8 per thousand) and delta(18)O values (+2.9 to +26.1 per thousand) are higher than those of Atacama ClO(4)(-). In contrast, ClO(4)(-) from western Texas and New Mexico has much lower Delta(17)O (+0.3 to +1.3 per thousand), with relatively high delta(37)Cl (+3.4 to +5.1 per thousand) and delta(18)O (+0.5 to +4.8 per thousand), indicating either that this material was not primarily generated with O(3) as a reactant or that the ClO(4)(-) was affected by postdepositional O isotope exchange. High Delta(17)O values in ClO(4)(-) (Atacama and Death Valley) are associated with high Delta(17)O values in NO(3)(-), indicating that both compounds preserve characteristics of O(3)-related atmospheric production in hyper-arid settings, whereas both compounds have low Delta(17)O values in less arid settings. Although Delta(17)O variations in terrestrial NO(3)(-) can be attributed to mixing of atmospheric (high Delta(17)O) and biogenic (low Delta(17)O) NO(3)(-), variations in Delta(17)O of terrestrial ClO(4)(-) are not readily explained in the same way. This study provides important new constraints for identifying natural sources of ClO(4)(-) in different environments by multicomponent isotopic characteristics, while presenting the possibilities of divergent ClO(4)(-) formation mechanisms and(or) ClO(4)(-) isotopic exchange in biologically active environments.


Applied and Environmental Microbiology | 2002

Enhancing Transport of Hydrogenophaga flava ENV735 for Bioaugmentation of Aquifers Contaminated with Methyl tert-Butyl Ether

Sheryl H. Streger; Simon Vainberg; Hailiang Dong; Paul B. Hatzinger

ABSTRACT The gasoline oxygenate methyl tert-butyl ether (MTBE) has become a widespread contaminant in groundwater throughout the United States. Bioaugmentation of aquifers with MTBE-degrading cultures may be necessary to enhance degradation of the oxygenate in some locations. However, poor cell transport has sometimes limited bioaugmentation efforts in the past. The objective of this study was to evaluate the transport characteristics of Hydrogenophaga flava ENV735, a pure culture capable of growth on MTBE, and to improve movement of the strain through aquifer solids. The wild-type culture moved only a few centimeters in columns of aquifer sediment. An adhesion-deficient variant (H. flava ENV735:24) of the wild-type strain that moved more readily through sediments was obtained by sequential passage of cells through columns of sterile sediment. Hydrophobic and electrostatic interaction chromatography revealed that the wild-type strain is much more hydrophobic than the adhesion-deficient variant. Electrophoretic mobility assays and transmission electron microscopy showed that the wild-type bacterium contains two distinct subpopulations, whereas the adhesion-deficient strain has only a single, homogeneous population. Both the wild-type strain and adhesion-deficient variant degraded MTBE, and both were identified by 16S rRNA analysis as pure cultures of H. flava. The effectiveness of surfactants for enhancing transport of the wild-type strain was also evaluated. Many of the surfactants tested were toxic to ENV735; however, one nonionic surfactant, Tween 20, enhanced cell transport in sand columns. Improving microbial transport may lead to a more effective bioaugmentation strategy for MTBE-contaminated sites where indigenous oxygenate degraders are absent.


Environmental Science & Technology | 2010

Natural Chlorate in the Environment: Application of a New IC-ESI/MS/MS Method with a Cl18O3- Internal Standard

Balaji Rao; Paul B. Hatzinger; John Karl Böhlke; Neil C. Sturchio; Brian J. Andraski; Frank D. Eckardt; W. Andrew Jackson

A new ion chromatography electrospray tandem mass spectrometry (IC-ESI/MS/MS) method has been developed for quantification and confirmation of chlorate (ClO₃⁻) in environmental samples. The method involves the electrochemical generation of isotopically labeled chlorate internal standard (Cl¹⁸O₃⁻) using ¹⁸O water (H₂¹⁸O) he standard was added to all samples prior to analysis thereby minimizing the matrix effects that are associated with common ions without the need for expensive sample pretreatments. The method detection limit (MDL) for ClO₃⁻ was 2 ng L⁻¹ for a 1 mL volume sample injection. The proposed method was successfully applied to analyze ClO₃⁻ in difficult environmental samples including soil and plant leachates. The IC-ESI/MS/MS method described here was also compared to established EPA method 317.0 for ClO₃⁻ analysis. Samples collected from a variety of environments previously shown to contain natural perchlorate (ClO₄⁻) occurrence were analyzed using the proposed method and ClO₃⁻ was found to co-occur with ClO₄⁻ at concentrations ranging from < 2 ng L⁻¹ in precipitation from Texas and Puerto Rico to >500 mg kg⁻¹ in caliche salt deposits from the Atacama Desert in Chile. Relatively low concentrations of ClO₃⁻ in some natural groundwater samples (0.1 µg L⁻¹) analyzed in this work may indicate lower stability when compared to ClO₄⁻ in the subsurface. The high concentrations ClO₃⁻ in caliches and soils (3-6 orders of magnitude greater) as compared to precipitation samples indicate that ClO₃⁻, like ClO₄⁻, may be atmospherically produced and deposited, then concentrated in dry soils, and is possibly a minor component in the biogeochemical cycle of chlorine.


Applied and Environmental Microbiology | 2006

Biotransformation of N-Nitrosodimethylamine by Pseudomonas mendocina KR1

Diane Fournier; Jalal Hawari; Sheryl H. Streger; Kevin McClay; Paul B. Hatzinger

ABSTRACT N-Nitrosodimethylamine (NDMA) is a potent carcinogen and an emerging contaminant in groundwater and drinking water. The metabolism of NDMA in mammalian cells has been widely studied, but little information is available concerning the microbial transformation of this compound. The objective of this study was to elucidate the pathway(s) of NDMA biotransformation by Pseudomonas mendocina KR1, a strain that possesses toluene-4-monooxygenase (T4MO). P. mendocina KR1 was observed to initially oxidize NDMA to N-nitrodimethylamine (NTDMA), a novel metabolite. The use of 18O2 and H218O revealed that the oxygen added to NDMA to produce NTDMA was derived from atmospheric O2. Experiments performed with a pseudomonad expressing cloned T4MO confirmed that T4MO catalyzes this initial reaction. The NTDMA produced by P. mendocina KR1 did not accumulate, but rather it was metabolized further to produce N-nitromethylamine (88 to 94% recovery) and a trace amount of formaldehyde (HCHO). Small quantities of methanol (CH3OH) were also detected when the strain was incubated with NDMA but not during incubation with either NTDMA or HCHO. The formation of methanol is hypothesized to occur via a second, minor pathway mediated by an initial α-hydroxylation of the nitrosamine. Strain KR1 did not grow on NDMA or mineralize significant quantities of the compound to carbon dioxide, suggesting that the degradation process is cometabolic.


Applied and Environmental Microbiology | 2009

Aerobic Biodegradation of N-Nitrosodimethylamine by the Propanotroph Rhodococcus ruber ENV425

Diane Fournier; Jalal Hawari; Annamaria Halasz; Sheryl H. Streger; Kevin McClay; Hisako Masuda; Paul B. Hatzinger

ABSTRACT The propanotroph Rhodococcus ruber ENV425 was observed to rapidly biodegrade N-nitrosodimethylamine (NDMA) after growth on propane, tryptic soy broth, or glucose. The key degradation intermediates were methylamine, nitric oxide, nitrite, nitrate, and formate. Small quantities of formaldehyde and dimethylamine were also detected. A denitrosation reaction, initiated by hydrogen atom abstraction from one of the two methyl groups, is hypothesized to result in the formation of n-methylformaldimine and nitric oxide, the former of which decomposes in water to methylamine and formaldehyde and the latter of which is then oxidized further to nitrite and then nitrate. Although the strain mineralized more than 60% of the carbon in [14C]NDMA to 14CO2, growth of strain ENV425 on NDMA as a sole carbon and energy source could not be confirmed. The bacterium was capable of utilizing NDMA, as well as the degradation intermediates methylamine and nitrate, as sources of nitrogen during growth on propane. In addition, ENV425 reduced environmentally relevant microgram/liter concentrations of NDMA to <2 ng/liter in batch cultures, suggesting that the bacterium may have applications for groundwater remediation.


Journal of Environmental Monitoring | 2011

Analysis of the key intermediates of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) in groundwater: occurrence, stability and preservation

Louise Paquet; Fanny Monteil-Rivera; Paul B. Hatzinger; Mark E. Fuller; Jalal Hawari

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a widely used explosive that is present in soils at a number of military sites, including training and testing ranges. Because of its relatively weak adsorption to soil, RDX frequently migrates through the unsaturated zone and causes groundwater contamination. In the environment, RDX can transform to produce mono-, di-, and tri-nitroso derivatives (MNX, DNX, and TNX) and the ring cleavage products methylenedinitramine (MEDINA) and 4-nitro-2,4-diazabutanal (NDAB). The present study was undertaken to analyze RDX and its products in groundwater samples taken from various US military sites. The stability of some of the common transformation intermediates of RDX, including the nitroso derivatives, NDAB and MEDINA, under typical conditions in a groundwater aquifer is not well understood, and appropriate preservation methods for these compounds have not been established. Therefore, we studied the inherent stability of these compounds in deionized water and in groundwater, and evaluated various preservation techniques, including adjustment of pH, temperature, and salinity. NDAB and nitroso derivatives were stable under typical ambient environmental conditions, but MEDINA was highly unstable. The addition of sea salts (10% w/v) was found to stabilize MEDINA when the samples were stored at 4 °C. Using appropriate preservation techniques, we detected nitroso derivatives and NDAB, but no MEDINA, at some of the sites investigated. Stabilizing RDX intermediate products in field samples to allow detection is important because the presence of any of these chemicals can indicate past contamination by RDX and provide insight into the occurrence of in situ natural attenuation.


Environmental Toxicology and Chemistry | 2011

Surfactant‐facilitated remediation of metal‐contaminated soils: Efficacy and toxicological consequences to earthworms

Ilya B. Slizovskiy; Jason W. Kelsey; Paul B. Hatzinger

The effectiveness of surfactant formulations to remove aged metals from a field soil and their influence on soil toxicity was investigated. Batch studies were conducted to evaluate the efficacy of cationic (1-dodecylpyridinium chloride; DPC), nonionic (oleyl dimethyl benzyl ammonium chloride; trade name Ammonyx KP), and anionic (rhamnolipid biosurfactant blend; trade name JBR-425) surfactants for extracting Zn, Cu, Pb, and Cd from a soil subjected to more than 80 years of metal deposition. All three surfactants enhanced removal of the target metals. The anionic biosurfactant JBR-425 was most effective, reducing Zn, Cu, Pb, and Cd in the soil by 39, 56, 68, and 43%, respectively, compared with less than 6% removal by water alone. Progressive acidification of the surfactants with citric acid buffer or addition of ethylenediaminetetra-acetic acid (EDTA) further improved extraction efficiency, with more than 95% extraction of all four metals by surfactants acidified to pH 3.6 and generally greater than 90% removal of all metals with addition of 0.1 M EDTA. In two species of earthworm, Eisenia fetida and Lumbricus terrestris, metal bioaccumulation was reduced by approximately 30 to 80%, total biomass was enhanced by approximately threefold to sixfold, and survival was increased to greater than 75% in surfactant-remediated soil compared with untreated soil. The data indicate that surfactant washing may be a feasible approach to treat surface soils contaminated with a variety of metals, even if those metals have been present for nearly a century, and that the toxicity and potential for metal accumulation in biota from the treated soils may be significantly reduced.


Water Research | 2011

Aerobic treatment of N-nitrosodimethylamine in a propane-fed membrane bioreactor.

Paul B. Hatzinger; Charles W. Condee; Kevin McClay; A. Paul Togna

N-Nitrosodimethylamine (NDMA) is a suspected human carcinogen that has recently been detected in wastewater, groundwater and drinking water. Treatment of this compound to low part-per-trillion (ng/L) concentrations is required to mitigate cancer risk. Current treatment generally entails UV irradiation, which while effective, is also expensive. The objective of this research was to explore potential bioremediation strategies as alternatives for treating NDMA to ng/L concentrations. Batch studies revealed that the propanotroph Rhodococcus ruber ENV425 was capable of metabolizing NDMA from 8 μg/L to <2 ng/L after growth on propane, and that the strain produced metabolites that do not pose a significant risk at the concentrations generated (Fournier et al., 2009). A laboratory-scale membrane bioreactor (MBR) was subsequently constructed to evaluate the potential for long-term ex situ treatment of NDMA. The MBR was seeded with ENV425 and received propane as the primary growth substrate and oxygen as an electron acceptor. At an average influent NDMA concentration of 7.4 μg/L and a 28.5 h hydraulic residence time, the reactor effluent concentration was 3.0 ± 2.3 ng/L (>99.95% removal) over more than 70 days of operation. The addition of trichloroethene (TCE) to the reactor resulted in a significant increase in effluent NDMA concentrations, most likely due to cell toxicity from TCE-epoxide produced during its cometabolic oxidation by ENV425. The data suggest that an MBR system can be a viable treatment option for NDMA in groundwater provided that high concentrations of TCE are not present.

Collaboration


Dive into the Paul B. Hatzinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Karl Böhlke

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Baohua Gu

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Linnea J. Heraty

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Abelardo D. Beloso

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carina M. Jung

Engineer Research and Development Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge