Paul B. Rimmer
University of St Andrews
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul B. Rimmer.
Astronomy and Astrophysics | 2010
M. Gerin; M. De Luca; J. H. Black; J. R. Goicoechea; E. Herbst; David A. Neufeld; E. Falgarone; B. Godard; J. C. Pearson; D. C. Lis; T. G. Phillips; T. A. Bell; Paule Sonnentrucker; F. Boulanger; J. Cernicharo; A. Coutens; E. Dartois; P. Encrenaz; Thomas F. Giesen; Paul F. Goldsmith; Harshal Gupta; C. Gry; P. Hennebelle; P. Hily-Blant; C. Joblin; M. Kazmierczak; R. Kołos; J. Krełowski; J. Martin-Pintado; Raquel Monje
We report the detection of absorption lines by the reactive ions OH + ,H 2O + and H3O + along the line of sight to the submillimeter continuum source G10.6−0.4 (W31C). We used the Herschel HIFI instrument in dual beam switch mode to observe the ground state rotational transitions of OH + at 971 GHz, H2O + at 1115 and 607 GHz, and H3O + at 984 GHz. The resultant spectra show deep absorption over a broad velocity range that originates in the interstellar matter along the line of sight to G10.6−0.4 as well as in the molecular gas directly associated with that source. The OH + spectrum reaches saturation over most velocities corresponding to the foreground gas, while the opacity of the H2O + lines remains lower than 1 in the same velocity range, and the H3O + line shows only weak absorption. For LSR velocities between 7 and 50 kms −1 we estimate total column densities of N(OH + ) ≥ 2.5 × 10 14 cm −2 , N(H2O + ) ∼6 × 10 13 cm −2 and N(H3O + ) ∼4.0 × 10 13 cm −2 . These detections confirm the role of O + and OH + in initiating the oxygen chemistry in diffuse molecular gas and strengthen our understanding of the gas phase production of water. The high ratio of the OH + by the H2O + column density implies that these species predominantly trace low-density gas with a small fraction of
Astronomy and Astrophysics | 2010
David A. Neufeld; J. R. Goicoechea; Paule Sonnentrucker; J. H. Black; J. C. Pearson; Shanshan Yu; T. G. Phillips; D. C. Lis; M. De Luca; E. Herbst; Paul B. Rimmer; M. Gerin; T. A. Bell; F. Boulanger; J. Cernicharo; A. Coutens; E. Dartois; M. Kazmierczak; P. Encrenaz; E. Falgarone; T. R. Geballe; Thomas F. Giesen; B. Godard; Paul F. Goldsmith; C. Gry; Harshal Gupta; P. Hennebelle; P. Hily-Blant; C. Joblin; R. Kołos
We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschels HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1-0 transition of OH+ and the 1115 GHz 1(11)-0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km s(-1) with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from similar to 3 to similar to 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2-8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few x10(-8) suggests a cosmic ray ionization rate for atomic hydrogen of 0.6-2.4 x 10(-16) s(-1), in good agreement with estimates inferred previously for diffuse clouds in the Galactic disk from observations of interstellar H-3(+) and other species.
Astronomy and Astrophysics | 2010
M. Gerin; M. De Luca; J. R. Goicoechea; E. Herbst; E. Falgarone; B. Godard; T. A. Bell; A. Coutens; M. Kaźmierczak; Paule Sonnentrucker; J. H. Black; David A. Neufeld; T. G. Phillips; J. C. Pearson; Paul B. Rimmer; G. Hassel; Dariusz C. Lis; C. Vastel; F. Boulanger; J. Cernicharo; E. Dartois; P. Encrenaz; Thomas F. Giesen; Paul F. Goldsmith; Harshal Gupta; C. Gry; P. Hennebelle; P. Hily-Blant; C. Joblin; R. Kołos
We report the detection of the ground state N, J = 1, 3/2 → 1, 1/2 doublet of the methylidyne radical CH at ∼532 GHz and ∼536 GHz with the Herschel/HIFI instrument along the sight-line to the massive star-forming regions G10.6–0.4 (W31C), W49N, and W51. While the molecular cores associated with these massive star-forming regions show emission lines, clouds in the diffuse interstellar medium are detected in absorption against the strong submillimeter background. The combination of hyperfine structure with emission and absorption results in complex profiles, with overlap of the different hyperfine components. The opacities of most of the CH absorption features are linearly correlated with those of CCH, CN, and HCO + in the same velocity intervals. In specific narrow velocity intervals, the opacities of CN and HCO + deviate from the mean trends, giving rise to more opaque absorption features. We propose that CCH can be used as another tracer of the molecular gas in the absence of better tracers, with [CCH]/[H2] ∼3.2 ± 1.1 × 10 −8 . The observed [CN]/[CH], [CCH]/[CH] abundance ratios suggest that the bulk of the diffuse matter along the lines of sight has gas densities nH = n(H) + 2n(H2) ranging between 100 and 1000 cm −3 .
Astronomy and Astrophysics | 2012
Paul B. Rimmer; Eric Herbst; Oscar Morata; E. Roueff
Context. Observations of small carbon-bearing molecules such as CCH, C4H, c-C3H2, and HCO in the Horsehead nebula have shown these species to have higher abundances towards the edge of the source than towards the center. Aims. Given the determination of a wide range of values for ζ (s −1 ), the total ionization rate of hydrogen atoms, and the proposal of a column-dependent ζ(NH), where NH is the total column of hydrogen nuclei, we desire to determine if the effects of ζ(NH) in a single object with spatial variation can be observable. We chose the Horsehead nebula because of its geometry and high density. Methods. We model the Horsehead nebula as a near edge-on photon dominated region (PDR), using several choices for ζ, both constant and as a function of column. The column-dependent ζ functions are determined by a Monte Carlo model of cosmic ray penetration, using a steep power-law spectrum and accounting for ionization and magnetic field effects. We consider a case with low-metal elemental abundances as well as a sulfur-rich case. Results. We show that use of a column-dependent ζ(NH )o f 5× 10 −15 s −1 at the surface and 7.5 × 10 −16 s −1 at AV = 10 on balance improves agreement between measured and theoretical molecular abundances, compared with constant values of ζ.
Astronomy and Astrophysics | 2010
H. Gupta; Paul B. Rimmer; J. C. Pearson; S. Yu; E. Herbst; N. Harada; Edwin A. Bergin; David A. Neufeld; Gary J. Melnick; R. Bachiller; W. Baechtold; T. A. Bell; G. A. Blake; E. Caux; C. Ceccarelli; J. Cernicharo; Goutam Chattopadhyay; C. Comito; S. Cabrit; Nathan R. Crockett; F. Daniel; E. Falgarone; M. C. Diez-Gonzalez; M.-L. Dubernet; Neal R. Erickson; M. Emprechtinger; P. Encrenaz; M. Gerin; John Gill; Thomas F. Giesen
We report observations of the reactive molecular ions OH+, H2O+, and H3O+ towards Orion KL with Herschel/HIFI. All three N = 1-0 fine-structure transitions of OH+ at 909, 971, and 1033 GHz and both fine-structure components of the doublet ortho-H2O+ 111-000 transition at 1115 and 1139 GHz were detected; an upper limit was obtained for H3O+. OH+ and H2O+ are observed purely in absorption, showing a narrow component at the source velocity of 9 km s-1, and a broad blueshifted absorption similar to that reported recently for HF and para-H218O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH+ and H2O+ for the 9 km s-1 component of 9 ± 3 × 1012 cm-2 and 7 ± 2 × 1012 cm-2, and those in the outflow of 1.9 ± 0.7 × 1013 cm-2 and 1.0 ± 0.3 × 1013 cm-2. Upper limits of 2.4 × 1012 cm-2 and 8.7 × 1012 cm-2 were derived for the column densities of ortho and para-H3O+ from transitions near 985 and 1657 GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
Life | 2014
Christiane Helling; Peter Woitke; Paul B. Rimmer; Inga Kamp; Wing-Fai Thi; R. Meijerink
We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. ProDiMo protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The Drift cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.
Monthly Notices of the Royal Astronomical Society | 2013
Camille Bilger; Paul B. Rimmer; Christiane Helling
We study the abundances of complex carbon-bearing molecules in the oxygen-rich dust- forming atmospheres of Brown Dwarfs and giant gas planets. The inner atmospheric re- gions that form the inner boundary for thermochemical gas-phase models are investigated. Results from Drift-phoenix atmosphere simulations, which include the feedback of phase- non-equilibrium dust cloud formation on the atmospheric structure and the gas-phase abun- dances, are utilised. The resulting element depletion leads to a shift in the carbon-to-oxygen ratio such that several hydrocarbon molecules and cyanopolycyanopolyynene molecules can be present. An increase in surface gravity and/or a decrease in metallicity support the increase in the partial pressures of these species. CO, CO2, CH4, and HCN contain the largest fraction of carbon. In the upper atmosphere of low-metallicity objects, more carbon is contained in C4H than in CO, and also CH3 and C2H2 play an increasingly important role as carbon-sink. We determine chemical relaxation time-scales to evaluate if hydrocarbon molecules can be affected by transport-induced quenching. Our results suggest that a considerable amount of C2H6 and C2H2 could be expected in the upper atmospheres not only of giant gas planets, but also of Brown Dwarfs. However, the exact quenching height strongly depends on the data source used. These results will have an impact on future thermo-kinetic studies, as they change the inner boundary condition for those simulations.
The Astrophysical Journal | 2013
Paul B. Rimmer; Christiane Helling
Cosmic rays provide an important source for free electrons in Earths atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 10 6 eV <E <10 9 eV, and an analytic cosmic ray transport model for particle energies of 10 9 eV <E< 10 12 eV in order to investigate the cosmic ray enhancement of free electrons in substellar atmospheres of free-floating objects. The cosmic ray calculations are applied toDrift-Phoenix model atmospheres of an example brown dwarf with effective temperature Teff = 1500 K, and two example giant gas planets (Teff = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure pgas < 10 −2 bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10 −4 -10 −2 bar, depending on the effective temperature. For the model atmosphere of the example giant gas planet considered here (Teff = 1000 K), cosmic rays bring the degree of ionization to fe 10 −8 when pgas < 10 −8 bar, suggesting that this part of the atmosphere may behave as a weakly ionized plasma. Although cosmic rays enhance the degree of ionization by over three orders of magnitude in the upper atmosphere, the effect is not likely to be significant enough for sustained coupling of the magnetic field to the gas.
Astrophysical Journal Supplement Series | 2016
Paul B. Rimmer; Christiane Helling
There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion-neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon and oxygen chemistry accurately within a temperature range between 100 K and 30000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD209458b, Jupiter and the present-day Earth using a simple 1D photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting (1993) for CO2, H2, CO and O2, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.
Monthly Notices of the Royal Astronomical Society | 2015
S. L. Casewell; K. A. Lawrie; P. F. L. Maxted; Mark S. Marley; Jonathan J. Fortney; Paul B. Rimmer; S. P. Littlefair; G. A. Wynn; M. R. Burleigh; Christiane Helling
Author(s): Casewell, SL; Lawrie, KA; Maxted, PFL; Marley, MS; Fortney, JJ; Rimmer, PB; Littlefair, SP; Wynn, G; Burleigh, MR; Helling, Ch | Abstract: WD0137-349 is a white dwarf-brown dwarf binary system in a 116 minute orbit. We present radial velocity observations and multiwaveband photometry from V, R and I in the optical, to J, H and Ks in the near-IR and [3.6], [4.5], [5.8] and [8.0] microns in the mid-IR. The photometry and lightcurves show variability in all wavebands, with the amplitude peaking at [4.5] microns, where the system is also brightest. Fluxes and brightness temperatures were computed for the heated and unheated atmosphere of the brown dwarf (WD0137-349B) using synthetic spectra of the white dwarf using model atmosphere simulations. We show that the flux from the brown dwarf dayside is brighter than expected in the Ks and [4.5] micron bands when compared to models of irradiated brown dwarfs with full energy circulation and suggest this over-luminosity may be attributed to H2 fluorescence or H3+ being generated in the atmosphere by the UV irradiation.