Paul B. Shepson
Purdue University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul B. Shepson.
Geophysical Research Letters | 1999
Richard E. Honrath; Matthew C Peterson; S Guo; Jack E. Dibb; Paul B. Shepson; Bradley M. Campbell
NOx and NOy were determined in the interstitial air of surface snow and in ambient air at Summit, Greenland. NOx levels in interstitial air were 3 to >10 times those in ambient air, and were generally greater than ambient NOy levels. [NOy] in interstitial air varied diurnally in a manner consistent with photochemical generation within the snowpack. These observations imply that photochemical reactions occurring within or upon the ice crystals of surface snow produced NOx from a N-reservoir compound within the snow. Average [NOx]:[HNO3] and [NOx]:[NOy] ratios in ambient air above the snow were elevated relative to other remote sites, indicating that NOx release within the snowpack may have altered NOx levels in the overlying atmospheric boundary layer. We suggest that the observed release of NOx may have been initiated by photolysis of nitrate, present in relative abundance in surface snow at Summit. Such a process may affect levels of nitrate and other compounds in surface snow, the overlying atmosphere, and glacial ice, and its potential role in cirrus cloud chemistry should be investigated.
Nature | 1999
Ann Louise Sumner; Paul B. Shepson
The oxidative capacity of the atmosphere determines the lifetime and ultimate fate of atmospheric trace species. It is controlled by the presence of highly reactive radicals, particularly OH· formed as a result of ozone photolysis. The dramatic depletion of ozone in Arctic surface air during polar sunrise, therefore offers an opportunity to improve our understanding of the processes controlling ozone abundance and hence the oxidative capacity of the atmosphere. Ozone destruction is catalysed by bromine atoms and is terminated once bromine reacts with formaldehyde to form relatively inert hydrogen bromide, but neither the activation of bromine nor the contribution of formaldehyde are fully understood. Particularly troubling is the failure of current models to simulate the high formaldehyde concentrations in Arctic surface air. Here we report measurements in Arctic snow and near-surface air, which suggest that photochemical production at the air–snow interface accounts for the discrepancy between observed and predicted formaldehyde concentrations. The strength of this source is comparable to that of the dominant formaldehyde source in the free troposphere (the reaction between OH· and methane) and implies that formaldehyde photolysis canbe a dominant source of oxidizing free radicals in the lower polar troposphere. We expect that formaldehyde will also affect photochemistry at the snow surface to facilitate the release of bromine into the lower troposphere—the initial step in Arctic tropospheric ozone depletion.
Geophysical Research Letters | 2001
Xianliang Zhou; Harald J. Beine; Richard E. Honrath; Jose D. Fuentes; William R. Simpson; Paul B. Shepson; J. W. Bottenheim
Both snow manipulation experiments and ambient measurements during the Polar Sunrise Experiment 2000 at Alert (Alert2000) indicate intensive photochemical production of nitrous acid (HONO) in the snowpack. This process constitutes a major HONO source for the overlying atmospheric boundary layer in the Arctic during the springtime, and sustained concentrations of HONO high enough that upon photolysis they became the dominant hydroxyl radical (OH) source. This implies a much greater role for OH radicals in Arctic polar sunrise chemistry than previously believed. Although the observations were made in the high Arctic, this finding has a significant implication for the boundary layer atmospheric chemistry in Antarctica during sunlit seasons and in the mid to high latitudes of the Northern Hemisphere during the winter and spring seasons when approximately 50% of the land mass may be covered by snow.
Journal of Geophysical Research | 2001
D. Tan; Ian C. Faloona; J. B. Simpas; William H. Brune; Paul B. Shepson; Tara L. Couch; Ann Louise Sumner; Mary Anne Carroll; T. Thornberry; Eric C. Apel; Daniel D. Riemer; William R. Stockwell
Results from a tightly constrained photochemical point model for OH and HO2 are compared to OH and HO2 data collected during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer 1998 intensive campaign held in northern Michigan. The PROPHET campaign was located in a deciduous forest marked by relatively low NOx levels and high isoprene emissions. Detailed HOx budgets are presented. The model is generally unable to match the measured OH, with the observations 2.7 times greater than the model on average. The model HO2, however, is in good agreement with the measured HO2. Even with an additional postulated OH source from the ozonolysis of unmeasured terpenes, the measured OH is 1.5 times greater than the model; the model HO2 with this added source is 15% to 30% higher than the measured HO2. Moreover, the HO2/OH ratios as modeled are 2.5 to 4 times higher than the measured ratios, indicating that the cycling between OH and HO2 is poorly described by the model. We discuss possible reasons for the discrepancies.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Dana R. Caulton; Paul B. Shepson; Renee Santoro; Jed P. Sparks; Robert W. Howarth; Anthony R. Ingraffea; Maria O. L. Cambaliza; Colm Sweeney; Anna Karion; Kenneth J. Davis; Brian H. Stirm; Stephen A. Montzka; B. R. Miller
Significance We identified a significant regional flux of methane over a large area of shale gas wells in southwestern Pennsylvania in the Marcellus formation and further identified several pads with high methane emissions. These shale gas pads were identified as in the drilling process, a preproduction stage not previously associated with high methane emissions. This work emphasizes the need for top-down identification and component level and event driven measurements of methane leaks to properly inventory the combined methane emissions of natural gas extraction and combustion to better define the impacts of our nation’s increasing reliance on natural gas to meet our energy needs. The identification and quantification of methane emissions from natural gas production has become increasingly important owing to the increase in the natural gas component of the energy sector. An instrumented aircraft platform was used to identify large sources of methane and quantify emission rates in southwestern PA in June 2012. A large regional flux, 2.0–14 g CH4 s−1 km−2, was quantified for a ∼2,800-km2 area, which did not differ statistically from a bottom-up inventory, 2.3–4.6 g CH4 s−1 km−2. Large emissions averaging 34 g CH4/s per well were observed from seven well pads determined to be in the drilling phase, 2 to 3 orders of magnitude greater than US Environmental Protection Agency estimates for this operational phase. The emissions from these well pads, representing ∼1% of the total number of wells, account for 4–30% of the observed regional flux. More work is needed to determine all of the sources of methane emissions from natural gas production, to ascertain why these emissions occur and to evaluate their climate and atmospheric chemistry impacts.
Atmospheric Environment. Part A. General Topics | 1991
Paul B. Shepson; D. R. Hastie; H. I. Schiff; M. Polizzi; J.W Bottenheim; K.G. Anlauf; Gervase I. Mackay; D.R. Karecki
Abstract Measurements of formaldehyde, acetaldehyde, acetone and propionaldehyde concentrations were made at two rural sites in central Ontario. One site (at Egbert, Ont.) is located ≈60 km northwest of Toronto, while the other site (at Dorset, Ont.) is ≈150 km northeast of the Egbert site. Measurements were made using a modified version of a derivatization technique in which sample air is pumped through Teflon tubes packed with silica gel that is coated with 2,4-dinitrophenylhydrazine (DNPH). The product hydrazones were separated and quantified using HPLC. Quantitative determinations of formaldehyde, acetaldehyde and acetone were made for 49 and 47 samples at the Dorset and Egbert sites, respectively, between 25 July and 30 August 1988. The average concentrations determined at the Dorset site for formaldehyde, acetaldehyde, and acetone were 1.6, 0.46 and 1.8 ppb, respectively, and for the Egbert site the corresponding averages were 1.8, 0.57 and 1.6 ppb. A set of 10 samples from the Egbert site were analysed for propionaldehyde yielding an average concentration of 0.03 ppb. The formaldehyde measurements were compared with measurements made at the same time using Tunable Diode Laser Absorption Spectroscopy. The observed concentrations reported here are compared with previously reported measurements of these species and interpreted in terms of atmospheric variables (e.g. meteorology, concentrations of precursor hydrocarbons) influencing their concentrations.
Journal of Geophysical Research | 2000
Brian A. Michalowski; Joseph S. Francisco; Shao-Meng Li; L. A. Barrie; J. W. Bottenheim; Paul B. Shepson
A multiphase chemical box model of Arctic halogen chemistry has been developed using a PC-based modeling program developed by Environment Canada called the Chemical Reactions Modeling System (CREAMS). The multiphase model contains 125 gas phase reactions, 19 photolysis reactions, and 16 aqueous reactions occurring in suspended aerosol particles and the quasi-liquid component of snow. The model simulates mass transfer of species between the gas phase and particles, and between the gas phase and the snowpack. Model simulations were conducted for the Arctic for the period April 16 to April 24 at 245 K within a 400 m boundary layer. The complete model simulates halogen-catalyzed ozone depletion within 5 days from the start of the model run, via known gas and heterogeneous phase activation mechanisms. A critically important model reaction is BrO + HCHO → HOBr + CHO, which has a substantial impact on gas phase HOBr, and subsequent condensed phase chemistry. When coupled with a necessary snowpack efflux of aldehydes, required to maintain the aldehyde concentrations at observed levels, the new BrO chemistry has a significant impact on the concentrations of gas phase bromine species, particle bromide, and chlorine atoms, through chemistry occurring in the snowpack. We also find that O3 depletion cannot be simulated without the presence of heterogeneous halogen chemistry occurring in the snowpack and that the rate of O3 depletion is limited by the mass transfer rate of HOBr to the snowpack.
Journal of Geophysical Research | 2001
Ian C. Faloona; D. Tan; William H. Brune; Julia M. Hurst; Dennis J. Barket; Tara L. Couch; Paul B. Shepson; Eric C. Apel; Daniel D. Riemer; Troy Thornberry; Mary Anne Carroll; Sanford Sillman; Gerald J. Keeler; Jessica Sagady; Dianne L. Hooper; Kurt Paterson
Diurnal measurements of hydroxyl and hydroperoxy radicals (OH and HO2) made during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer intensive of 1998 indicate that these key components of gas phase atmospheric oxidation are sustained in significant amounts throughout the night in this northern forested region. Typical overnight levels of OH observed were 0.04 parts per trillion (pptv) (1.1 × 106 molecules/cm3), while HO2 concentrations ranged from 1 to 4 pptv. Results of diagnostic testing performed before, after, and during the deployment suggest little possibility of interferences in the measurements. Collocated measurements of the reactive biogenic hydrocarbon isoprene corroborate the observed levels of OH by exhibiting significant decays overnight above the forest canopy. The observed isoprene lifetimes ranged from 1.5 to 12 hours in the dark, and they correlate well to those expected from chemical oxidation by the measured OH abundances. Possible dark reactions that could generate such elevated levels of OH include the ozonolysis of extremely reactive biogenic terpenoids. However, in steady state models, which include this hypothetical production mechanism, HO2 radicals are generated in greater quantities than were measured. Nonetheless, if the measurements are representative of the nocturnal boundary layer in midlatitude temperate forests, this observed nocturnal phenomenon might considerably alter our understanding of the diurnal pattern of atmospheric oxidation in such pristine, low-NOx environments.
Journal of Geophysical Research | 1998
Xiaohui Chen; David Hulbert; Paul B. Shepson
This paper describes the results of measurements of the branching ratio (k2b/(k2a + k2b)) for formation of organic nitrates via peroxy radical reaction with NO, following the reaction of the OH radical with isoprene (2-methyl-l,3-butadiene). The experiments were conducted in a 5 m3 all-Teflon photochemical reaction chamber, via the photolysis of isopropyl nitrite in the presence of isoprene and NO. The organic nitrate yield was determined from the measurement of the sum of all organic nitrate isomers, using an organic nitrate selective detector, as a function of isoprene consumed. Organic nitrates were sampled directly from the reaction chamber into a capillary Chromatographic column, followed by separation and quantitative pyrolytic conversion to NO2, which was detected through luminol chemiluminescence. In this manner, seven isomeric organic nitrates were observed, with a total yield of 4.4%. The structural features of the precursor peroxy radicals that influence the magnitude of the yield is discussed. Emission inventories for isoprene and NO lead to the conclusion that as much as 7% of NO emitted in the eastern United States in the summer months is lost from the atmosphere through the isoprene nitrate channel.
Journal of Geophysical Research | 1997
G. A. Impey; Paul B. Shepson; D. R. Hastie; L. A. Barrie; K. G. Anlauf
We report measurements of rapidly photolyzable chlorine (Clp; e.g., Cl2 And HOCl) and bromine (Brp; e.g., Br2 and HOBr) in the high Arctic using a newly developed photoactive halogen detector (PHD). Ground level ambient air was sampled daily from mid-February through mid-April in the Canadian Arctic at Alert, Northwest Territories (82.5°N, 62.3°W), as part of the Polar Sunrise Experiment (PSE) 1995. Concentrations of “total photolyzable chlorine” varied from <9 to 100 pptv as Cl2 and that of “total photolyzable bromine” from <4 to 38 pptv as Br2. High concentration episodes of chlorine were observed only prior to sunrise (March 21), while high concentration episodes of bromine were measured throughout the study. The high concentrations of photolyzable chlorine and bromine prior to sunrise suggest a “dark” production mechanism that we assume yields Cl2 and Br2. An inverse correlation of bromine with ozone is clearly present in one major ozone depletion episode at the end of March. A trajectory analysis, taken with the differences in measured levels of photolyzable chlorine and bromine after sunrise, imply different production mechanisms for these two types of species. A steady state analysis of the data for one ozone depletion episode suggests a [Br]/[Cl] ratio in the range 100–300. The high concentrations of photolyzable bromine after sunrise imply the existence of a precursor other than aerosol bromide.