Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Ben Ishai is active.

Publication


Featured researches published by Paul Ben Ishai.


Measurement Science and Technology | 2013

Electrode polarization in dielectric measurements: a review

Paul Ben Ishai; Mark S. Talary; Andreas Caduff; Evgeniya Levy; Yuri Feldman

In this review, we present an overview of the state of the art concerning the fundamental properties of electrode polarization (EP) of interest in the measurement of high conductivity samples and its implications for both dielectric (DS) and impedance spectroscopy (IS). Initially a detailed description of what constitutes EP is provided and the problems that it induces. Then, we review some of the more popular models that have been used to describe the physical phenomena behind the formation of the ionic double layer. Following this we shall enumerate the common strategies used historically to correct its influence on the measured signals in DS or in IS. Finally we also review recent attempts to employ fractal electrodes to bypass the effects of EP and to offer some physical explanation as to the limitations of their use.


Physics in Medicine and Biology | 2009

The electromagnetic response of human skin in the millimetre and submillimetre wave range

Yuri Feldman; Alexander Puzenko; Paul Ben Ishai; Andreas Caduff; Issak Davidovich; F. Sakran; Aharon J. Agranat

Recent studies of the minute morphology of the skin by optical coherence tomography revealed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. This, together with the fact that the dielectric permittivity of the dermis is higher than that of the epidermis, brings forward the supposition that as electromagnetic entities, the sweat ducts could be regarded as low Q helical antennas. The implications of this statement were further investigated by electromagnetic simulation and experiment of the in vivo reflectivity of the skin of subjects under varying physiological conditions (Feldman et al 2008 Phys. Rev. Lett. 100 128102). The simulation and experimental results are in a good agreement and both demonstrate that sweat ducts in the skin could indeed behave as low Q antennas. Thus, the skin spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system and shows the minimum of reflectivity at some frequencies in the frequency band of 75-110 GHz. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure. As such, it has the potential to become the underlying principle for remote sensing of the physiological parameters and the mental state of the examined subject.


Journal of Chemical Physics | 2012

Dielectric spectra broadening as the signature of dipole-matrix interaction. I. Water in nonionic solutions

Evgeniya Levy; Alexander Puzenko; U. Kaatze; Paul Ben Ishai; Yuri Feldman

Whenever water interacts with another dipolar entity, a broadening of its dielectric relaxation occurs. Often this broadening can be described by the Cole-Cole (CC) spectral function. A new phenomenological approach has been recently presented [A. Puzenko, P. Ben Ishai, and Y. Feldman, Phys. Rev. Lett. 105, 037601 (2010)] that illustrates a physical mechanism of the dipole-matrix interaction underlying the CC behavior in complex systems. By considering the relaxation amplitude Δε, the relaxation time τ, and the broadening parameter α, one can construct a set of 3D trajectories, representing the dynamic behavior of different systems under diverse conditions. Our hypothesis is that these trajectories will contribute to a deeper understanding of the dielectric properties of complex systems. The paper demonstrates how the model describes the state of water in aqueous solutions of non-ionic solutes. For this purpose complex dielectric spectra for aqueous solutions of D-glucose and D-fructose are analyzed.


Langmuir | 2008

From the microscopic to the mesoscopic properties of lyotropic reverse hexagonal liquid crystals.

Dima Libster; Paul Ben Ishai; Abraham Aserin; Gil Shoham; Nissim Garti

In the present study we aimed to explore a correlation between the microstructural properties of the lyotropic reverse hexagonal phase (HII) of the GMO/tricaprylin/phosphatidylcholine/water system and its mesoscopic structure. The mesoscopic organization of discontinuous and anisotropic domains was examined, in the native state, using environmental scanning electron microscopy. The topography of the HII mesophases was imaged directly in their hydrated state, as a function of aqueous-phase concentration and composition, when a proline amino acid was solubilized into the systems as a kosmotropic (water-structure maker) guest molecule. The domain structures of several dozen micrometers in size, visualized in the environmental scanning electron microscopy, were found to possess fractal characteristics, indicating a discontinuous and disordered alignment of the corresponding internal water rods on the mesoscale. On the microstructural level, SAXS measurements revealed that as water content (Cw) increases the characteristic lattice parameter of the mesophases increases as well. Using the water concentration as the mass measure of the mixtures, a scaling relationship between the lattice parameter and the concentration was found to obey a power law whereby the derived fractal dimension was the relevant exponent, confirming the causal link between the microscopic and mesoscopic organizations. The topography of the HII mesophase was found to be affected by the microstructural parameters and the composition of the samples. Thermal analysis experiments involving these systems further confirmed that the behavior of water underpins both microscopical and mesoscopic features of the systems. It was shown that both the swelling of the lattice parameter and the mesoscopic domains is correlated to the bulk water concentration in the water rods.


Journal of Physical Chemistry B | 2013

Influence of ions on water diffusion--a neutron scattering study.

Paul Ben Ishai; Eugene Mamontov; Jonathan D. Nickels; Alexei P. Sokolov

Using quasielastic neutron scattering spectroscopy, we measured the averaged translational diffusion of water in solutions of biologically relevant salts, NaCl, a kosmotrope, and KCl, a chaotrope. The analysis revealed the striking difference in the influence of these ions on water dynamics. While the averaged water diffusion slows down in the presence of the structure making (kosmotrope) Na(+) ion, the diffusion becomes faster in the presence of the structure breaking (chaotrope) K(+) ion. The latter means that, despite strong Coulombic interactions introduced by the K(+) ions, their disruption of the hydrogen-bonding network is so significant that it leads to faster diffusion of the water molecules.


IEEE Transactions on Terahertz Science and Technology | 2013

The Helical Structure of Sweat Ducts: Their Influence on the Electromagnetic Reflection Spectrum of the Skin

Itai Hayut; Alexander Puzenko; Paul Ben Ishai; Alexander Polsman; Aharon J. Agranat; Yuri Feldman

The helical structure of human eccrine sweat ducts, together with the dielectric properties of the human skin, suggested that their electromagnetic (EM) properties would resemble those of an array of helical antennas. In order to examine the implications of this assumption, numerical simulations in the frequency range of 100-450 GHz, were conducted. In addition, an initial set of measurements was made, and the reflection spectrum measured from the skin of human subjects was compared to the simulation results. The simulation model consisted of a three layer skin model (dermis, epidermis, and stratum corneum) with rough boundaries between the layers and helical sweat ducts embedded into the epidermis. The spectral response obtained by our simulations coincides with the analytical prediction of antenna theory and supports the hypothesis that the sweat ducts can be regarded as helical antennas. The results of the spectrum measurements from the human skin are in good agreement with the simulation results in the vicinity of the axial mode. The magnitude of this response depends on the conductivity of sweat in these frequencies, but the analysis of the phenomena and the frequencies related to the antenna-like modes are independent of this parameter. Furthermore, circular dichroism of the reflected electromagnetic field is a characteristic property of such helical antennas. In this work we show that: 1) circular dichroism is indeed a characteristic of the simulation model and 2) the helical structure of the sweat ducts has the strongest effect on the reflected signal at frequencies above 200 GHz, where the wavelength and the dimensions of the ducts are comparable. In particular, the strongest spectral response (as calculated by the simulations and measured experimentally) was noted around the predicted frequency (380 GHz) for the axial mode of the helical structure.


Scientific Reports | 2015

Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region

Saroj R. Tripathi; Eisuke Miyata; Paul Ben Ishai; Kodo Kawase

It is crucial to understand the various biological effects induced by terahertz (THz) electromagnetic waves with the rapid development of electronic and photonic devices operating in the THz frequency region. The presence of sweat glands plays an important role in THz wave interactions with human skin. We investigated the morphological features of sweat ducts using optical coherence tomography (OCT) to further understand such phenomena. We observed remarkable features of the ducts, such as their clear helical structure. The intersubject and intrasubject variations in the diameter of sweat ducts were considerably smaller than the variations in other structural parameters, such as length and number of turns. Based on the sweat duct dimensions and THz dielectric properties of skin measured using terahertz time-domain spectroscopy (THz-TDS), we calculated the resonating frequency of the sweat duct under the assumption of it functioning as a helical antenna. Here, we show that the resonance frequency in the axial mode of operation lies in the THz wave region with a centre frequency of 0.44 ± 0.07 THz. We expect that these findings will further our understanding of the various health consequences of the interaction of THz waves with human beings.


Journal of Physical Chemistry B | 2010

Influence of cyclosporine A on molecular interactions in lyotropic reverse hexagonal liquid crystals.

Paul Ben Ishai; Dima Libster; Abraham Aserin; Nissim Garti; Yuri Feldman

We present a dielectric study of H(II) mesophases (H(II)) based on a GMO/tricaprylin/phosphatidylcholine/water system seeded with the peptide Cyclosporine A (CSA). The study covers a frequency range 0.01 Hz to 1 MHz and a temperature range of 293 to 319 K, with a 3 K temperature step. Three dielectric relaxation processes are observed and discussed. This picture is further elucidated by comparison with a dielectric study of the empty H(II) mesophase system, previously published, where the same three processes were involved. A complex picture emerges whereby the CSA is intercalated between the surfactant tails yet protrudes into the interface as well. Whereas the CSA remains hydrophobic, it still influences the relaxation behavior of the GMO head and counterion movement along the interface in a nontrivial manner. The third dipolar species, the tricaprylin molecule, is also influenced by the presence of CSA. A critical temperature T(0) = 307 K is recognized and identified as the dehydration temperature of the surfactant heads. This induces a conformal transition in the CSA, drastically changing its effect on the three dielectric processes evident in the raw data. The implications of this behavior are discussed in detail.


Clays and Clay Minerals | 2014

DIELECTRIC RELAXATION OF WATER IN CLAY MINERALS

Maria A. Vasilyeva; Yuri Gusev; Valery G. Shtyrlin; Anna Gutina; Alexander Puzenko; Paul Ben Ishai; Yuri Feldman

The study of confined water dynamics in clay minerals is a very important topic in aluminosilicate-surface chemistry. Aluminosilicates are among the most technologically versatile materials in industry today. Dielectric spectroscopy is a very useful method for investigating the structure and dynamics of water adsorbed on solid matrix surfaces and water in the vicinity of ions in solutions. Use of this method for the study of clay minerals has been underutilized to date, however. The main goal of the present research was to understand the relaxation mechanisms of water molecules interacting with different hydration centers in clay minerals, with a view to eventually control this interaction. Two types of natural layered aluminosilicates (clay minerals) — montmorillonite with exchangeable K+, Co2+, and Ni2+ cations and kaolinite with exchangeable K+ and Ba2+ cations — were examined by means of dielectric spectroscopy over wide ranges of temperature (from -121°C to +300°C) and frequency (1 Hz–1 MHz). An analysis of the experimental data is provided in terms of four distributed relaxation processes. The low-temperature relaxation was observed only in montmorillonites and could be subdivided into two processes, each related to a specific hydration center. The cooperative behavior of water at the interface was observed in the intermediate temperature region, together with a proton percolation. The dielectric properties of ice-like and confined water structures in the layered clay minerals were compared with the dielectric response observed in porous glasses. The spatial fractal dimensions of the porous aluminosilicates were calculated by two separate methods — from an analysis of the fractality found in photomicrographs and from the dielectric response.


Colloid and Polymer Science | 2014

The dielectric response of interfacial water—from the ordered structures to the single hydrated shell

Yuri Feldman; Alexander Puzenko; Paul Ben Ishai; A. Greenbaum

Water is the universal solvent in nature. Does this imply, however, that its interaction with its environment is also a universal feature? While this question maybe too fundamental to be answered by one method only, we present evidence that the broadening of the dielectric spectra of water presents universal features of dipolar interactions with different types of matrixes. If in aqueous solutions the starting point of water’s state can be considered as bulk, with only partial interactions with the solute, then the state of water adsorbed in heterogeneous materials is determined by various hydration centers of the inhomogeneous material (the matrix) and it is significantly different from the bulk. In both cases, the dielectric spectrum of water is symmetrical and can be described by the Cole–Cole (CC) function. The phenomenological model that describes a physical mechanism of the dipole–matrix interaction in complex systems underlying the CC behavior has been applied to water adsorbed in porous glasses. It was then extended to analyses of the dynamic and structural behavior of water in nonionic and ionic aqueous solutions. The same model is then used to analyze the CC relaxation processes observed in clays, aqueous solutions of nucleotides, and amino acids.

Collaboration


Dive into the Paul Ben Ishai's collaboration.

Top Co-Authors

Avatar

Yuri Feldman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Alexander Puzenko

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Abraham Aserin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Aharon J. Agranat

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Evgeniya Levy

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Nissim Garti

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Andreas Caduff

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Alexander Polsman

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Daniel Agranovich

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Dima Libster

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge