Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul C. Beard is active.

Publication


Featured researches published by Paul C. Beard.


Interface Focus | 2011

Biomedical photoacoustic imaging

Paul C. Beard

Photoacoustic (PA) imaging, also called optoacoustic imaging, is a new biomedical imaging modality based on the use of laser-generated ultrasound that has emerged over the last decade. It is a hybrid modality, combining the high-contrast and spectroscopic-based specificity of optical imaging with the high spatial resolution of ultrasound imaging. In essence, a PA image can be regarded as an ultrasound image in which the contrast depends not on the mechanical and elastic properties of the tissue, but its optical properties, specifically optical absorption. As a consequence, it offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chomophores, but with greater penetration depth than purely optical imaging modalities that rely on ballistic photons. As well as visualizing anatomical structures such as the microvasculature, it can also provide functional information in the form of blood oxygenation, blood flow and temperature. All of this can be achieved over a wide range of length scales from micrometres to centimetres with scalable spatial resolution. These attributes lend PA imaging to a wide variety of applications in clinical medicine, preclinical research and basic biology for studying cancer, cardiovascular disease, abnormalities of the microcirculation and other conditions. With the emergence of a variety of truly compelling in vivo images obtained by a number of groups around the world in the last 2–3 years, the technique has come of age and the promise of PA imaging is now beginning to be realized. Recent highlights include the demonstration of whole-body small-animal imaging, the first demonstrations of molecular imaging, the introduction of new microscopy modes and the first steps towards clinical breast imaging being taken as well as a myriad of in vivo preclinical imaging studies. In this article, the underlying physical principles of the technique, its practical implementation, and a range of clinical and preclinical applications are reviewed.


Applied Optics | 2008

Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues

Edward Z. Zhang; Jan Laufer; Paul C. Beard

A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 microm with an optically defined element size of 64 microm. Two sensors were used, one with a 22 microm thick polymer film spacer and the other with a 38 mum thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 microm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 microm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 microm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.


Journal of Biomedical Optics | 2012

Quantitative spectroscopic photoacoustic imaging: a review

Ben Cox; Jan Laufer; Simon R. Arridge; Paul C. Beard

Obtaining absolute chromophore concentrations from photoacoustic images obtained at multiple wavelengths is a nontrivial aspect of photoacoustic imaging but is essential for accurate functional and molecular imaging. This topic, known as quantitative photoacoustic imaging, is reviewed here. The inverse problems involved are described, their nature (nonlinear and ill-posed) is discussed, proposed solution techniques and their limitations are explained, and the remaining unsolved challenges are introduced.


Physics in Medicine and Biology | 2007

Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

Jan Laufer; Dave Delpy; Clare E. Elwell; Paul C. Beard

A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO(2)) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO(2)) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO(2) and HHb, total haemoglobin concentration and SO(2). The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of +/-3.8 g l(-1) (+/-58 microM) and +/-4.4 g l(-1) (+/-68 microM) for the HbO(2) and HHb concentrations respectively and +/-4% for SO(2) with an accuracy in the latter in the range -6%-+7%.


Physics in Medicine and Biology | 2009

In vivo high-resolution 3D photoacoustic imaging of superficial vascular anatomy

Edward Z. Zhang; Jan Laufer; Rb Pedley; Paul C. Beard

The application of a photoacoustic imaging instrument based upon a Fabry-Perot polymer film ultrasound sensor to imaging the superficial vasculature is described. This approach provides a backward mode-sensing configuration that has the potential to overcome the limitations of current piezoelectric based detection systems used in superficial photoacoustic imaging. The system has been evaluated by obtaining non-invasive images of the vasculature in human and mouse skin as well as mouse models of human colorectal tumours. These studies showed that the system can provide high-resolution 3D images of vascular structures to depths of up to 5 mm. It is considered that this type of instrument may find a role in the clinical assessment of conditions characterized by changes in the vasculature such as skin tumours and superficial soft tissue damage due to burns, wounds or ulceration. It may also find application in the characterization of small animal cancer models where it is important to follow the tumour vasculature over time in order to study its development and/or response to therapy.


Applied Optics | 2006

Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method

Benjamin T. Cox; Simon R. Arridge; Kornel P. Köstli; Paul C. Beard

Photoacoustic imaging is a noninvasive biomedical imaging modality for visualizing the internal structure and function of soft tissues. Conventionally, an image proportional to the absorbed optical energy is reconstructed from measurements of light-induced acoustic emissions. We describe a simple iterative algorithm to recover the distribution of optical absorption coefficients from the image of the absorbed optical energy. The algorithm, which incorporates a diffusion-based finite-element model of light transport, converges quickly onto an accurate estimate of the distribution of absolute absorption coefficients. Two-dimensional examples with physiologically realistic optical properties are shown. The ability to recover optical properties (which directly reflect tissue physiology) could enhance photoacoustic imaging techniques, particularly methods based on spectroscopic analysis of chromophores.


Applied Optics | 2003

Two-dimensional photoacoustic imaging by use of Fourier-transform image reconstruction and a detector with an anisotropic response

Kornel P. Köstli; Paul C. Beard

Theoretical and experimental aspects of two-dimensional (2D) biomedical photoacoustic imaging have been investigated. A 2D Fourier-transform-based reconstruction algorithm that is significantly faster and produces fewer artifacts than simple radial backprojection methods is described. The image-reconstruction time for a 208 x 482 pixel image is approximately 1 s. For the practical implementation of 2D photoacoustic imaging, a rectangular detector geometry was used to obtain an anisotropic detection sensitivity in order to reject out-of-plane signals, thereby permitting a tomographic image slice to be reconstructed. This approach was investigated by the numerical modeling of the broadband directional response of a rectangular detector and imaging of various spatially calibrated absorbing targets immersed in a turbid phantom. The experimental setup was based on a Q-switched Nd:YAG excitation laser source and a mechanically line-scanned Fabry-Perot polymer-film ultrasound sensor. For a 800 microm x 200 microm rectangular detector, the reconstructed image slice thickness was 0.8 mm up to a vertical distance of z = 3.5 mm from the detector, increasing thereafter to 2 mm at z = 10 mm. Horizontal and vertical spatial resolutions within the reconstructed slice were approximately 200 and 60 microm, respectively.


Journal of Biomedical Optics | 2012

In vivo preclinical photoacoustic imaging of tumor vasculature development and therapy

Jan Laufer; Peter Johnson; Edward Z. Zhang; Bradley E. Treeby; Ben Cox; Barbara Pedley; Paul C. Beard

The use of a novel all-optical photoacoustic scanner for imaging the development of tumor vasculature and its response to a therapeutic vascular disrupting agent is described. The scanner employs a Fabry-Perot polymer film ultrasound sensor for mapping the photoacoustic waves and an image reconstruction algorithm based upon attenuation-compensated acoustic time reversal. The system was used to noninvasively image human colorectal tumor xenografts implanted subcutaneously in mice. Label-free three-dimensional in vivo images of whole tumors to depths of almost 10 mm with sub-100-micron spatial resolution were acquired in a longitudinal manner. This enabled the development of tumor-related vascular features, such as vessel tortuosity, feeding vessel recruitment, and necrosis to be visualized over time. The system was also used to study the temporal evolution of the response of the tumor vasculature following the administration of a therapeutic vascular disrupting agent (OXi4503). This revealed the well-known destruction and recovery phases associated with this agent. These studies illustrate the broader potential of this technology as an imaging tool for the preclinical and clinical study of tumors and other pathologies characterized by changes in the vasculature.


Physics in Medicine and Biology | 2005

In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.

Jan Laufer; Clare E. Elwell; Dave Delpy; Paul C. Beard

Pulsed photoacoustic spectroscopy was used to measure blood oxygen saturation in vitro. An optical parametric oscillator laser system provided nanosecond excitation pulses over the wavelength range 740-1040 nm which were used to generate photoacoustic signals in a cuvette through which a saline suspension of red blood cells was circulated. The signal amplitude and the effective attenuation coefficient were extracted from the photoacoustic signals as a function of wavelength to provide photoacoustic spectra of the blood. From these, the relative concentrations of oxy- and deoxyhaemoglobin, and therefore blood oxygen saturation (SO2), were determined using forward models of the absorbed energy distribution based on diffusion theory. A standard linear model of the dependence of absorbance on the concentration of chromophores was also used to calculate the blood oxygen saturation from the signal amplitude spectra. The diffusion approximation model was shown to produce the highest accuracy in blood SO2. The photoacoustically determined oxygen saturation was found to have an accuracy of +/-4% SO2 for signal amplitude data and +/-2.5% SO2 for effective attenuation spectra. The smallest change in oxygen saturation that can be measured using this technique was +/-1% SO2.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 1999

Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection

Paul C. Beard; F. Pérennès; Tim Mills

The transduction mechanisms of a wideband (30 MHz) contact ultrasound sensor based upon the use of a thin polymer film acting as a Fabry-Perot interferometer have been investigated. Polyethylene terepthalate (PET) sensing elements, illuminated by the free-space collimated output of a wavelength-tunable DBR laser diode, have been used to study the sensor transfer function, sensitivity, the effect of water absorption, and frequency response characteristics. Acoustic performance was evaluated by comparing the sensor output with that of a calibrated PVDF membrane hydrophone using laser-generated acoustic transients as a source of broadband ultrasound. An ultrasonic acoustic phase sensitivity of 0.1 rad/MPa, a linear operating range to 5 MPa, and a noise-equivalent-pressure of 20 kPa over a 25 MHz measurement bandwidth were obtained using a water-backed 50 /spl mu/m PET sensing film. A model of frequency response that incorporates the effect of an adhesive layer between the sensor film and backing material has been developed and validated for different sensing film thicknesses, backing configurations, and adhesive layer thicknesses.

Collaboration


Dive into the Paul C. Beard's collaboration.

Top Co-Authors

Avatar

Edward Z. Zhang

University College London

View shared research outputs
Top Co-Authors

Avatar

Jan Laufer

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ben Cox

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin T. Cox

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Allen

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam Huynh

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge