Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul C. Sehnke is active.

Publication


Featured researches published by Paul C. Sehnke.


Journal of Molecular Evolution | 2000

Evolution of the 14-3-3 protein family: does the large number of isoforms in multicellular organisms reflect functional specificity?

Magnus Rosenquist; Paul C. Sehnke; Robert J. Ferl; Marianne Sommarin; Christer Larsson

Abstract. 14-3-3 proteins constitute a family of eukaryotic proteins that are key regulators of a large number of processes ranging from mitosis to apoptosis. 14-3-3s function as dimers and bind to particular motifs in their target proteins. To date, 14-3-3s have been implicated in regulation or stabilization of more than 35 different proteins. This number is probably only a fraction of the number of proteins that 14-3-3s bind to, as reports of new target proteins have become more frequent. An examination of 14-3-3 entries in the public databases reveals 153 isoforms, including alleloforms, reported in 48 different species. The number of isoforms range from 2, in the unicellular organism Saccharomyces cerevisiae, to 12 in the multicellular organism Arabidopsis thaliana. A phylogenetic analysis reveals that there are four major evolutionary lineages: Viridiplantae (plants), Fungi, Alveolata, and Metazoa (animals). A close examination of the aligned amino acid sequences identifies conserved amino acid residues and regions of importance for monomer stabilization, dimer formation, target protein binding, and the nuclear export function. Given the fact that 53% of the protein is conserved, including all amino acid residues in the target binding groove of the 14-3-3 monomer, one might expect little to no isoform specificity for target protein binding. However, using surface plasmon resonance we show that there are large differences in affinity between nine 14-3-3 isoforms of A. thaliana and a target peptide representing a novel binding motif present in the C terminus of the plant plasma membrane H+ATPase. Thus, our data suggest that one reason for the large number of isoforms found in multicellular organisms is isoform-specific functions.


Trends in Plant Science | 1999

The 14-3-3 proteins: cellular regulators of plant metabolism

Hwa-Jee Chung; Paul C. Sehnke; Robert J. Ferl

Signal transduction and enzyme regulation are known to occur via phosphorylation, but it is becoming increasingly apparent that phosphorylation might be only a necessary preamble to regulation. In many cases, the phosphorylated target protein must associate with a specialized adapter protein, known as 14-3-3, to complete the regulatory action. There are several prominent examples of 14-3-3 participation in plant regulatory events, including the regulation of plasma membrane H+-ATPase, nitrate reductase and sucrose phosphate synthase. However, emerging data on 14-3-3s in the nucleus might extend the roles for 14-3-3s well beyond the regulation of cytoplasmic enzymes.


The Plant Cell | 1994

Phosphorylation and calcium binding properties of an Arabidopsis GF14 brain protein homolog.

Guihua Lu; Paul C. Sehnke; Robert J. Ferl

Arabidopsis GF14 omega was originally described because of its apparent association with a DNA-protein complex; it is a member of the 14-3-3 kinase regulatory protein family that is conserved throughout eukaryotes. Here, we demonstrated that recombinant GF14 omega is expressed in Escherichia coli as a dimer. Blot binding and electrophoretic mobility shift analyses indicated that GF14 omega binds calcium. Equilibrium dialysis further demonstrated that GF14 omega binds an equimolar amount of calcium with an apparent binding constant of 5.5 x 10(4) M-1 under physiological conditions. The C-terminal domain, which contains a potential EF hand motif, is responsible for the calcium binding. The C-terminal domain also cross-reacted with the anti-GF14 omega monoclonal antibody. In addition, GF14 omega is phosphorylated by Arabidopsis protein kinase activity at a serine residue(s) in vitro. Therefore, GF14 omega protein has biochemical properties consistent with potential signaling roles in plants. The presence of a potential EF hand-like motif in the highly conserved C terminus of 14-3-3 proteins together with the calcium-dependent multiple functions attributed to the 14-3-3 proteins indicate that the C terminus EF hand is a common functional element of this family of proteins.


The Plant Cell | 1999

Specific Interactions with TBP and TFIIB in Vitro Suggest That 14-3-3 Proteins May Participate in the Regulation of Transcription When Part of a DNA Binding Complex

Songqin Pan; Paul C. Sehnke; Robert J. Ferl; William B. Gurley

The 14-3-3 family of multifunctional proteins is highly conserved among animals, plants, and yeast. Several studies have shown that these proteins are associated with a G-box DNA binding complex and are present in the nucleus in several plant and animal species. In this study, 14-3-3 proteins are shown to bind the TATA box binding protein (TBP), transcription factor IIB (TFIIB), and the human TBP–associated factor hTAFII32 in vitro but not hTAFII55. The interactions with TBP and TFIIB were highly specific, requiring amino acid residues in the box 1 domain of the 14-3-3 protein. These interactions do not require formation of the 14-3-3 dimer and are not dependent on known 14-3-3 recognition motifs containing phosphoserine. The 14-3-3–TFIIB interaction appears to occur within the same domain of TFIIB that binds the human herpes simplex virus transcriptional activator VP16, because VP16 and 14-3-3 were able to compete for interaction with TFIIB in vitro. In a plant transient expression system, 14-3-3 was able to activate GAL4-dependent β-glucuronidase reporter gene expression at low levels when translationally fused with the GAL4 DNA binding domain. The in vitro binding with general transcription factors TBP and TFIIB together with its nuclear location provide evidence supporting a role for 14-3-3 proteins as transcriptional activators or coactivators when part of a DNA binding complex.


Plant Molecular Biology | 2002

Evolution and isoform specificity of plant 14-3-3 proteins.

Paul C. Sehnke; Magnus Rosenquist; Magnus Alsterfjord; Justin M. DeLille; Marianne Sommarin; Christer Larsson; Robert J. Ferl

The 14-3-3 proteins, once thought of as obscure mammalian brain proteins, are fast becoming recognized as major regulators of plant primary metabolism and of other cellular processes. Their presence as large gene families in plants underscores their essential role in plant physiology. We have examined the Arabidopsis thaliana 14-3-3 gene family, which currently is the largest and most complete 14-3-3 family with at least 12 expressed members and 15 genes from the now completed Arabidopsis thaliana genome project. The phylogenetic branching of this family serves as the prototypical model for comparison with other large plant 14-3-3 families and as such may serve to rationalize clustering in a biological context. Equally important for ascribing common functions for the various 14-3-3 isoforms is determining an isoform-specific correlation with localization and target partnering. A summary of localization information available in the literature is presented. In an effort to identify specific 14-3-3 isoform location and participation in cellular processes, we have produced a panel of isoform-specific antibodies to Arabidopsis thaliana 14-3-3s and present initial immunolocalization studies that suggest biologically relevant, discriminative partnering of 14-3-3 isoforms.


Plant Molecular Biology | 1994

A single Arabidopsis GF14 isoform possesses biochemical characteristics of diverse 14-3-3 homologues

Guihua Lu; Nick C. de Vetten; Paul C. Sehnke; Toshiaki Isobe; Tohru Ichimura; Haian Fu; G. Paul H. van Heusden; Robert J. Ferl

Arabidopsis cDNA clones of GF14 proteins originally were isolated on the basis of their association with the G-box DNA/protein complex by a monoclonal antibody screening approach. GF14 proteins are homologous to the 14-3-3 family of mammalian proteins. Here we demonstrate that recombinant GF14 ω, one member of the Arabidopsis GF14 protein family, is a dimeric protein that possesses many of the attributes of diverse mammalian 14-3-3 homologues. GF14 ω activates rat brain tryptophan hydroxylase and protein kinase C in a manner similar to the bovine 14-3-3 protein. It also activates exoenzyme S of Pseudomonas aeruginosa as does bovine brain factor activating exoenzyme S (FAS), which is itself a member of 14-3-3 proteins. In addition, GF14 ω binds calcium, as does the human 14-3-3 homologue reported to be a phospholipase A2. These results indicate that a single isoform of this plant protein family can have multiple functions and that individual GF14 isoforms may have multiple roles in mediating signal transductions in plants. However, GF14 ω does not regulate growth in an in vivo test for functional similarity to the yeast 14-3-3 homologue, BMH1. Thus, while a single plant GF14 isoform can exhibit many of the biochemical attributes of diverse mammalian 14-3-3 homologues, open questions remain regarding the physiological functions of GF14/14-3-3 proteins.


Current Biology | 1996

Plant metabolism: Enzyme regulation by 14-3-3 proteins

Paul C. Sehnke; Robert J. Ferl

14-3-3 proteins have been found to regulate the plant enzyme nitrate reductase by reversible phosphoserine binding. Plant plasma-membrane H(+)-ATPases, transporters that are activated by the phytotoxin fusicoccin, appear to be regulated in a similar fashion.


Plant Physiology | 2006

Exposed Loop Domains of Complexed 14-3-3 Proteins Contribute to Structural Diversity and Functional Specificity

Paul C. Sehnke; Beth Laughner; Helene L. Cardasis; David H. Powell; Robert J. Ferl

The 14-3-3 family of proteins functions through protein:phosphoprotein interactions, the nature of which has been elucidated using x-ray crystallography. However, some key structural features in nonconserved regions have yet to be fully resolved, leaving open questions regarding the functional selectivity of 14-3-3 family members for diverse clients. In an effort to study surface accessible structural features in 14-3-3 containing macromolecular complexes and to illuminate important structure/function variations among the 14-3-3 isoforms, we determined the epitopes for three unique monoclonal antibodies (mAbs) developed against the Arabidopsis (Arabidopsis thaliana) G-box DNA:protein complex. The epitopes mapped to different loops in a phylogenetically important subset of the 13 14-3-3 family members. All three epitopes were on a common exposed face of complexed 14-3-3s. Two of the mAbs recognized linear sequences within loops 5 and 6, while the third mAb recognized 14-3-3 residues surrounding the pivotal medial Gly in the divalent cation-binding domain of loop 8, together with distal residue(s) in the putative dynamic 10th helix that has yet to be determined by crystallography. Gly at this loop 8 position is unique to nonepsilon 14-3-3 isoforms of the plant kingdom, suggesting that this region constitutes a plant-specific key functional 14-3-3 feature and highlighting that the loop 8 region is functionally significant. Mutagenesis of the medial amino acid in the loop 8 domain changed the flexibility of the C terminus and altered client peptide-binding selectivity, demonstrating the functional significance of the surface accessible, evolutionarily distinct loop 8 domain.


Science Signaling | 2000

Plant 14-3-3s: Omnipotent Metabolic Phosphopartners?

Paul C. Sehnke; Robert J. Ferl

The accurate regulation of metabolism is crucial to the existence all organisms. The inappropriate activation of metabolic enzymes can waste precious energy; likewise, the failure to activate metabolic enzymes can disrupt homeostasis and lead to suboptimal cellular (and organismic) responses. Plants use several means to control their metabolic proteins, including a two-step process of protein phosphorylation and subsequent binding by phosphospecific binding proteins termed 14-3-3 proteins. Sehnke and Ferl discuss how 14-3-3 proteins regulate the activity of nitrate reductase and the H+-ATPase pump in plants, and compare the functions of 14-3-3 proteins in plants and animals.


Cell Research | 2005

Identification and characterization of GIP1, an Arabidopsis thaliana protein that enhances the DNA binding affinity and reduces the oligomeric state of G-box binding factors.

Paul C. Sehnke; Beth J. Laughner; Carla R Lyerly Linebarger; William B. Gurley; Robert J. Ferl

ABSTRACTEnvironmental control of the alcohol dehydrogenase (Adh) and other stress response genes in plants is in part brought about by transcriptional regulation involving the G-box cis-acting DNA element and bZIP G-box Binding Factors (GBFs). The mechanisms of GBF regulation and requirements for additional factors in this control process are not well understood. In an effort to identify potential GBF binding and control partners, maize GBF1 was used as bait in a yeast two-hybrid screen of an A. thaliana cDNA library. GBF Interacting Protein 1 (GIP1) arose from the screen as a 496 amino acid protein with a predicted molecular weight of 53,748 kDa that strongly interacts with GBFs. Northern analysis of A. thaliana tissue suggests a 1.8-1.9 kb GIP1 transcript, predominantly in roots. Immunolocalization studies indicate that GIP1 protein is mainly localized to the nucleus. In vitro electrophoretic mobility shift assays using an Adh G-box DNA probe and recombinant A. thaliana GBF3 or maize GBF1, showed that the presence of GIP1 resulted in a tenfold increase in GBF DNA binding activity without altering the migration, suggesting a transient association between GIP1 and GBF. Addition of GIP1 to intentionally aggregated GBF converted GBF to lower molecular weight macromolecular complexes and GIP1 also refolded denatured rhodanese in the absence of ATP. These data suggest GIP1 functions to enhance GBF DNA binding activity by acting as a potent nuclear chaperone or crowbar, and potentially regulates the multimeric state of GBFs, thereby contributing to bZIP-mediated gene regulation.

Collaboration


Dive into the Paul C. Sehnke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Wu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guihua Lu

University of Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge