Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul C. Wang is active.

Publication


Featured researches published by Paul C. Wang.


ACS Nano | 2012

Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo.

Keyang Huang; Huili Ma; Juan Liu; Shuaidong Huo; Anil Kumar; Tuo Wei; Xu Zhang; Shubin Jin; Yaling Gan; Paul C. Wang; Shengtai He; Xiaoning Zhang; Xing-Jie Liang

This work demonstrated that ultrasmall gold nanoparticles (AuNPs) smaller than 10 nm display unique advantages over nanoparticles larger than 10 nm in terms of localization to, and penetration of, breast cancer cells, multicellular tumor spheroids, and tumors in mice. Au@tiopronin nanoparticles that have tunable sizes from 2 to 15 nm with identical surface coatings of tiopronin and charge were successfully prepared. For monolayer cells, the smaller the Au@tiopronin NPs, the more AuNPs found in each cell. In addition, the accumulation of Au NPs in the ex vivo tumor model was size-dependent: smaller AuNPs were able to penetrate deeply into tumor spheroids, whereas 15 nm nanoparticles were not. Owing to their ultrasmall nanostructure, 2 and 6 nm nanoparticles showed high levels of accumulation in tumor tissue in mice after a single intravenous injection. Surprisingly, both 2 and 6 nm Au@tiopronin nanoparticles were distributed throughout the cytoplasm and nucleus of cancer cells in vitro and in vivo, whereas 15 nm Au@tiopronin nanoparticles were found only in the cytoplasm, where they formed aggregates. The ex vivo multicellular spheroid proved to be a good model to simulate in vivo tumor tissue and evaluate nanoparticle penetration behavior. This work gives important insights into the design and functionalization of nanoparticles to achieve high levels of accumulation in tumors.


Biomaterials | 2009

The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials

Jun Jie Yin; Fang Lao; Peter P. Fu; Wayne G. Wamer; Yuliang Zhao; Paul C. Wang; Yang Qiu; Baoyun Sun; Gengmei Xing; Jinquan Dong; Xing-Jie Liang; Chunying Chen

We demonstrated that three different types of water-soluble fullerenes materials can intercept all of the major physiologically relevant ROS. C(60)(C(COOH)(2))(2), C(60)(OH)(22), and Gd@C(82)(OH)(22) can protect cells against H(2)O(2)-induced oxidative damage, stabilize the mitochondrial membrane potential and reduce intracellular ROS production with the following relative potencies: Gd@C(82)(OH)(22)> or =C(60)(OH)(22)>C(60)(C(COOH)(2))(2). Consistent with their cytoprotective abilities, these derivatives can scavenge the stable 2,2-diphenyl-1-picryhydrazyl radical (DPPH), and the reactive oxygen species (ROS) superoxide radical anion (O(2)(*-)), singlet oxygen, and hydroxyl radical (HO(*)), and can also efficiently inhibit lipid peroxidation in vitro. The observed differences in free radical-scavenging capabilities support the hypothesis that both chemical properties, such as surface chemistry induced differences in electron affinity, and physical properties, such as degree of aggregation, influence the biological and biomedical activities of functionalized fullerenes. This represents the first report that different types of fullerene derivatives can scavenge all physiologically relevant ROS. The role of oxidative stress and damage in the etiology and progression of many diseases suggests that these fullerene derivatives may be valuable in vivo cytoprotective and therapeutic agents.


ACS Nano | 2010

Enhanced Gene Delivery and siRNA Silencing by Gold Nanoparticles Coated with Charge-Reversal Polyelectrolyte

Shutao Guo; Yuanyu Huang; Qiao Jiang; Yun Sun; Liandong Deng; Zicai Liang; Quan Du; Jinfeng Xing; Yuliang Zhao; Paul C. Wang; Anjie Dong; Xing-Jie Liang

Charge-reversal functional gold nanoparticles first prepared by layer-by-layer technique were employed to deliver small interfering RNA (siRNA) and plasmid DNA into cancer cells. Polyacrylamide gel electrophoresis measurements of siRNA confirmed the occurrence of the charge-reversal property of functional gold nanoparticles. The expression efficiency of enhanced green fluorescent protein (EGFP) was improved by adjuvant transfection with charge-reversal functional gold nanoparticles, which also had much lower toxicity to cell proliferation. Lamin A/C, an important nuclear envelope protein, was effectively silenced by lamin A/C-siRNA delivered by charge-reversal functional gold nanoparticles, whose knockdown efficiency was better than that of commercial Lipofectamine 2000. Confocal laser scanning microscopic images indicated that there was more cy5-siRNA distributed throughout the cytoplasm for cyanine 5-siRNA/polyethyleneimine/cis-aconitic anhydride-functionalized poly(allylamine)/ polyethyleneimine/11-mercaptoundecanoic acid-gold nanoparticle (cy5-siRNA/PEI/PAH-Cit/PEI/MUA-AuNP) complexes. These results demonstrate the feasibility of using charge-reversal functional gold nanoparticles as a means of improving the nucleic acid delivery efficiency.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis

Xing-Jie Liang; Huan Meng; Yingze Wang; Haiyong He; Jie Meng; Juan Lu; Paul C. Wang; Yuliang Zhao; Xueyun Gao; Baoyun Sun; Chunying Chen; Genmei Xing; Ding-Wu Shen; Michael M. Gottesman; Yan Wu; Jun Jie Yin; Lee Jia

Cisplatin is a chemotherapeutic drug commonly used in clinics. However, acquired resistance confines its application in chemotherapeutics. To overcome the acquired resistance to cisplatin, it is reasoned, based on our previous findings of mediation of cellular responses by [Gd@C82(OH)22]n nanoparticles, that [Gd@C82(OH)22]n may reverse tumor resistance to cisplatin by reactivating the impaired endocytosis of cisplatin-resistant human prostate cancer (CP-r) cells. Here we report that exposure of the CP-r PC-3-luc cells to cisplatin in the presence of nontoxic [Gd@C82(OH)22]n not only decreased the number of surviving CP-r cells but also inhibited growth of the CP-r tumors in athymic nude mice as measured by both optical and MRI. Labeling the CP-r PC-3 cells with transferrin, an endocytotic marker, demonstrated that pretreatment of the CP-r PC-3-luc cells with [Gd@C82(OH)22]n enhanced intracellular accumulation of cisplatin and formation of cisplatin-DNA adducts by restoring the defective endocytosis of the CP-r cancer cells. The results suggest that [Gd@C82(OH)22]n nanoparticles overcome tumor resistance to cisplatin by increasing its intracellular accumulation through the mechanism of restoring defective endocytosis. The technology can be extended to other challenges related to multidrug resistance often found in cancer treatments.


Methods of Molecular Biology | 2010

Circumventing tumor resistance to chemotherapy by nanotechnology.

Xing-Jie Liang; Chunying Chen; Yuliang Zhao; Paul C. Wang

Patient relapse and metastasis of malignant cells is very common after standard cancer treatment with surgery, radiation, and/or chemotherapy. Chemotherapy, a cornerstone in the development of present day cancer therapy, is one of the most effective and potent strategies to treat malignant tumors. However, the resistance of cancer cells to the drugs remains a significant impediment to successful chemotherapy. An additional obstacle is the inability of chemotherapeutic drugs to selectively target tumor cells. Almost all the anticancer agents have severe side effects on normal tissues and organs. The toxicity of currently available anticancer drugs and the inefficiency of chemotherapeutic treatments, especially for advanced stages of the disease, have limited the optimization of clinical drug combinations and effective chemotherapeutic protocols. Nanomedicine allows the release of drugs by biodegradation and self-regulation of nanomaterials in vitro and in vivo. Nanotechnologies are characterized by effective drug encapsulation, controllable self-assembly, specificity and biocompatibility as a result of their own material properties. Nanotechnology has the potential to overcome current chemotherapeutic barriers in cancer treatment, because of the unique nanoscale size and distinctive bioeffects of nanomaterials. Nanotechnology may help to solve the problems associated with traditional chemotherapy and multidrug resistance.


Biotechnology Advances | 2014

Techniques for physicochemical characterization of nanomaterials

Ping-Chang Lin; Stephen Lin; Paul C. Wang; Rajagopalan Sridhar

Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics.


ACS Nano | 2014

Ultrasmall Gold Nanoparticles as Carriers for Nucleus-Based Gene Therapy Due to Size-Dependent Nuclear Entry

Shuaidong Huo; Shubin Jin; Xiaowei Ma; Xiangdong Xue; Keni Yang; Anil Kumar; Paul C. Wang; Jinchao Zhang; Zhongbo Hu; Xing-Jie Liang

The aim of this study was to determine the size-dependent penetration ability of gold nanoparticles and the potential application of ultrasmall gold nanoparticles for intranucleus delivery and therapy. We synthesized gold nanoparticles with diameters of 2, 6, 10, and 16 nm and compared their intracellular distribution in MCF-7 breast cancer cells. Nanoparticles smaller than 10 nm (2 and 6 nm) could enter the nucleus, whereas larger ones (10 and 16 nm) were found only in the cytoplasm. We then investigated the possibility of using ultrasmall 2 nm nanoparticles as carriers for nuclear delivery of a triplex-forming oligonucleotide (TFO) that binds to the c-myc promoter. Compared to free TFO, the nanoparticle-conjugated TFO was more effective at reducing c-myc RNA and c-myc protein, which resulted in reduced cell viability. Our result demonstrated that the entry of gold nanoparticles into the cell nucleus is critically dependent on the size of the nanoparticles. We developed a strategy for regulating gene expression, by directly delivering TFOs into the nucleus using ultrasmall gold nanoparticles. More importantly, guidelines were provided to choose appropriate nanocarriers for different biomedical purposes.


Molecular Pharmacology | 2008

Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger.

Jun Jie Yin; Fang Lao; Jie Meng; Peter P. Fu; Yuliang Zhao; Genqmei Xing; Xueyun Gao; Baoyun Sun; Paul C. Wang; Chunying Chen; Xing-Jie Liang

Intraperitoneal injection of [Gd@C82(OH)22]n nanoparticles decreased activities of enzymes associated with the metabolism of reactive oxygen species (ROS) in the tumor-bearing mice. Several physiologically relevant ROS were directly scavenged by nanoparticles, and lipid peroxidation was inhibited in this study. [Gd@C82(OH)22]n nanoparticles significantly reduced the electron spin resonance (ESR) signal of the stable 2,2-diphenyl-1-picryhydrazyl radical measured by ESR spectroscopy. Like-wise, studies using ESR with spin-trapping demonstrated efficient scavenging of superoxide radical anion, hydroxyl radical, and singlet oxygen (1O2) by [Gd@C82(OH)22]n nanoparticles. In vitro studies using liposomes prepared from bovine liver phosphatidylcholine revealed that nanoparticles also had a strong inhibitory effect on lipid peroxidation. Consistent with their ability to scavenge ROS and inhibit lipid peroxidation, we determined that [Gd@C82(OH)22]n nanoparticles also protected cells subjected in vitro to oxidative stress. Studies using human lung adenocarcinoma cells or rat brain capillary endothelial cells demonstrated that [Gd@C82(OH)22]n nanoparticles reduced H2O2-induced ROS formation and mitochondrial damage. [Gd@C82(OH)22]n nanoparticles efficiently inhibited the growth of malignant tumors in vivo. In summary, the results obtained in this study reveal antitumor activities of [Gd@C82(OH)22]n nanoparticles in vitro and in vivo. Because ROS are known to be implicated in the etiology of a wide range of human diseases, including cancer, the present findings demonstrate that the potent inhibition of [Gd@C82(OH)22]n nanoparticles on tumor growth likely relates with typical capacity of scavenging reactive oxygen species.


Biomaterials | 2011

Amphiphilic and biodegradable methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) as an effective gene carrier

Shutao Guo; Yuanyu Huang; Tuo Wei; Wendi Zhang; Weiwei Wang; Daoshu Lin; Xu Zhang; Anil Kumar; Quan Du; Jinfeng Xing; Liandong Deng; Zicai Liang; Paul C. Wang; Anjie Dong; Xing-Jie Liang

A group of amphiphilic cationic polymers, methoxy polyethylene glycol-block-(polycaprolactone-graft-poly(2-(dimethylamino)ethyl methacrylate)) (PECD), were synthesized by combining ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP) methods to form nanoparticles (NPs). The structures of these amphiphilic cationic polymers were characterized by (1)H NMR measurement. The PECD NPs have hydrophobic cores covered with hydrophilic PEG and cationic PDMAEMA chains. These self-assembly nanoparticles were characterized by dynamic light scattering (DLS) technique. PECD NPs can effectively condense DNA to form compact complexes of the size 65-160 nm suitable for gene delivery. The in vitro gene transfection studies of HeLa and HepG2 cells show that PECD NPs have better transfection efficiency compared to polyethylenimine (PEI) and Lipofectamine 2000 at low dose (N/P = 5). The cytotoxicity result shows that PECD NPs/DNA complexes at the optimal N/P ratio for transfection have comparable toxicity with PEI and Lipofectamine. These results indicate that PECD NPs have a great potential to be used as efficient polymeric carriers for gene transfection.


Current Drug Metabolism | 2008

Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

Xing-Jie Liang; Chunying Chen; Yuliang Zhao; Lee Jia; Paul C. Wang

Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well.

Collaboration


Dive into the Paul C. Wang's collaboration.

Top Co-Authors

Avatar

Xing-Jie Liang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shubin Jin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuliang Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunqiu Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiangdong Xue

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge