Paul D. Ray
University of North Carolina at Chapel Hill
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul D. Ray.
Frontiers in Genetics | 2014
Paul D. Ray; Andrew E. Yosim; Rebecca C. Fry
Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are alterations to an individuals genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.
Free Radical Biology and Medicine | 2008
Elizabeth L. MacKenzie; Paul D. Ray; Yoshiaki Tsuji
Tight regulation of intracellular iron levels in response to mitochondrial dysfunction is an important mechanism that prevents oxidative stress, thereby limiting cellular damage. Here, we describe a cytoprotective response involving transcriptional activation of the ferritin H gene in response to the mitochondrial complex I inhibitor and neurotoxic compound rotenone. Rotenone exposure increased ferritin H mRNA and protein synthesis in NIH3T3 fibroblasts and SH-SY5Y neuroblastoma cells. Transient transfection of a ferritin H promoter-luciferase reporter into NIH3T3 cells showed that ferritin H was transcriptionally activated by rotenone through an antioxidant-responsive element (ARE). Chromatin immunoprecipitation assays showed that rotenone treatment enhanced binding of Nrf2 and JunD transcription factors to the ARE. In addition, rotenone induced production of reactive oxygen species (ROS), and pretreatment with N-acetylcysteine abrogated ferritin H mRNA induction by rotenone, suggesting that this response is oxidative stress-mediated. Furthermore, reduced ferritin H expression by siRNA sensitized cells to rotenone-induced apoptosis with increased ROS production and annexin V-positive cells. Taken together, these results suggest that ferritin H transcription is activated by rotenone via an oxidative stress-mediated pathway leading to ARE activation and may be critically important to protect cells from mitochondrial dysfunction and oxidative stress.
The FASEB Journal | 2013
Bo-Wen Huang; Paul D. Ray; Kenta Iwasaki; Yoshiaki Tsuji
Antioxidant genes such as ferritin are transcriptionally activated in oxidative stress via the antioxidant responsive element (ARE), to which nuclear factor‐E2‐related factor 2 (Nrf2) binds and activates transcription. Histone modification plays a cooperative and essential role in transcriptional regulation; however, its role in antioxidant gene transcription remains elusive. Arsenic exposure activated ferritin transcription via the ARE concomitant with increased methylation of histones H4Arg3 (H4R3) and H3Arg17 (H3R17). To test our hypothesis that histone H4R3 and H3R17 methylation regulates ferritin transcription, H4R3 and H3R17 protein arginine (R) methyltransferases 1 and 4 (PRMT1 and PRMT4) were investigated. Arsenic exposure of human HaCaT keratinocytes induced nuclear accumulation of PRMT1 and PRMT4, histone H4R3 and H3R17 methylation proximal to the ARE, but not to the non‐ARE regions of ferritin genes. PRMT1 or PRMT4 knockdown did not block Nrf2 nuclear accumulation but inhibited Nrf2 binding to the AREs by ~40% (P<0.05), thus diminishing ferritin transcription in HaCaT and human primary keratinocytes and fibroblasts, causing enhanced cellular susceptibility to arsenic toxicity as evidenced by 2‐fold caspase 3 activation. Focused microarray further characterized several oxidative stress response genes are subject to PRMT1 or PRMT4 regulation. Collectively, PRMT1 and PRMT4 regulate the ARE and cellular antioxidant response to arsenic.—Huang, B.‐W., Ray, P. D., Iwasaki, K., Tsuji, Y., Transcriptional regulation of the human ferritin gene by coordinated regulation of Nrf2 and protein arginine methyltransferases PRMT1 and PRMT4. FASEB J. 27, 3763–3774 (2013). www.fasebj.org
PLOS ONE | 2015
Jessica E. Laine; Paul D. Ray; Wanda Bodnar; Peter Hans Cable; Kim Boggess; Steven Offenbacher; Rebecca C. Fry
Environmental exposure to heavy metals is a potentially modifiable risk factor for preeclampsia (PE). Toxicologically, there are known interactions between the toxic metal cadmium (Cd) and essential metals such as selenium (Se) and zinc (Zn), as these metals can protect against the toxicity of Cd. As they relate to preeclampsia, the interaction between Cd and these essential metals is unknown. The aims of the present study were to measure placental levels of Cd, Se, and Zn in a cohort of 172 pregnant women from across the southeast US and to examine associations of metals levels with the odds of PE in a nested case-control design. Logistic regressions were performed to assess odds ratios (OR) for PE with exposure to Cd controlling for confounders, as well as interactive models with Se or Zn. The mean placental Cd level was 3.6 ng/g, ranging from 0.52 to 14.5 ng/g. There was an increased odds ratio for PE in relationship to placental levels of Cd (OR = 1.5; 95% CI: 1.1–2.2). The Cd-associated OR for PE increased when analyzed in relationship to lower placental Se levels (OR = 2.0; 95% CI: 1.1–3.5) and decreased with higher placental Se levels (OR = 0.98; 95% CI: 0.5–1.9). Similarly, under conditions of lower placental Zn, the Cd-associated OR for PE was elevated (OR = 1.8; 95% CI: 0.8–3.9), whereas with higher placental Zn it was reduced (OR = 1.3; 95% CI: 0.8–2.0). Data from this pilot study suggest that essential metals may play an important role in reducing the odds of Cd-associated preeclampsia and that replication in a larger cohort is warranted.
Biochemistry | 2013
Kenta Iwasaki; Paul D. Ray; Bo-Wen Huang; Kensuke Sakamoto; Takaaki Kobayashi; Yoshiaki Tsuji
Resveratrol, a natural polyphenol, increases cellular antioxidant capacity by inducing the expression of a battery of cytoprotective genes through an antioxidant responsive element (ARE). However, upstream signaling events initiated by resveratrol leading to the activation of an ARE enhancer, particularly in immune cells, have not been fully elucidated. In this study, ARE-dependent transcriptional activation of the ferritin heavy chain (ferritin H) gene by resveratrol was further investigated in Jurkat T cells and human peripheral blood mononuclear cells. We found that AMP-activated protein kinase (AMPK) plays a key role in the activation of nuclear factor E2-related factor (Nrf2) and subsequent ARE-dependent ferritin H gene transcription by resveratrol. A chromatin immunoprecipitation assay for Nrf2 after AMPKα knockdown with siRNA revealed that Nrf2 nuclear accumulation and subsequent binding to the ferritin H ARE induced by resveratrol were dependent on activation of AMPKα, but not PI3K/AKT. Furthermore, AMPKα knockdown blocked resveratrol-induced phosphorylation of glycogen synthase kinase 3β (GSK3β) at Ser9 as well as ARE-dependent transcriptional activation of the ferritin H and HO-1 genes, suggesting that AMPKα is an upstream kinase for GSK3β phosphorylation and activation of the Nrf2-ARE pathway. Consistently, GSK3β knockdown by siRNA enhanced resveratrol-mediated ferritin H mRNA induction, and the inhibition of AMPKα by compound C or siRNA weakened the protective effect of resveratrol against oxidative stress-induced cytotoxicity in CD3+ T cells. Collectively, these results suggest that AMPKα plays a significant role in ARE-dependent transcription of ferritin H genes by resveratrol and may influence the redox status in immune cells.
Biochimica et Biophysica Acta | 2015
Paul D. Ray; Bo-Wen Huang; Yoshiaki Tsuji
Expression of the antioxidant gene heme oxygenase-1 (HO-1) is primarily induced through NF-E2-related factor 2 (Nrf2)-mediated activation of the antioxidant response element (ARE). Gene transcription is coordinately regulated by transcription factor activity at enhancer elements and epigenetic alterations such as the posttranslational modification of histone proteins. However, the role of histone modifications in the Nrf2-ARE axis remains largely uncharacterized. The environmental contaminant arsenite is a potent inducer of both HO-1 expression and phosphorylation of histone H3 serine 10 (H3S10); therefore, we investigated the relationships between Nrf2 and H3S10 phosphorylation in arsenite-induced, ARE-dependent, transcriptional activation of the human HO-1 gene. Arsenite increased phosphorylation of H3S10 both globally and at the HO-1 promoter concomitantly with HO-1 transcription in human HaCaT keratinocytes. Conversely, arsenite-induced H3S10 phosphorylation and HO-1 expression were blocked by N-acetylcysteine (NAC), the c-Jun N-terminal kinase (JNK) inhibitor SP600125, and JNK knockdown (siJNK). Interestingly, ablation of arsenite-induced H3S10 phosphorylation by SP600125 or siJNK did not inhibit Nrf2 nuclear accumulation nor ARE binding, despite inhibiting HO-1 expression. In response to arsenite, binding of Nrf2 to the HO-1 ARE preceded phosphorylation of H3S10 at the HO-1 ARE. Furthermore, arsenite-mediated occupancy of phosphorylated H3S10 at the HO-1 ARE was decreased in Nrf2-deficient mouse embryonic fibroblasts. These results suggest the involvement of H3S10 phosphorylation in the Nrf2-ARE axis by proposing that Nrf2 may influence H3S10 phosphorylation at the HO-1 ARE and additional promoter regions. Our data highlights the complex interplay between Nrf2 and H3S10 phosphorylation in arsenite-activated HO-1 transcription.
Toxicology and Applied Pharmacology | 2015
Oluwadamilare A. Adebambo; Paul D. Ray; Damian Shea; Rebecca C. Fry
Exposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells. These cells serve as a model for evaluating cellular responses to exposures during pregnancy. One of the mixtures was predominated by iAs and one by Cd. Six gene biomarkers were measured in order to evaluate the effects from the metal mixtures using dose and time-course experiments including: heme oxygenase 1 (HO-1) and metallothionein isoforms (MT1A, MT1F and MT1G) previously shown to be preferentially induced by exposure to either iAs or Cd, and metal transporter genes aquaporin-9 (AQP9) and ATPase, Cu(2+) transporting, beta polypeptide (ATP7B). There was a significant increase in the mRNA expression levels of ATP7B, HO-1, MT1A, MT1F, and MT1G in mixture-treated cells compared to the iAs or Cd only-treated cells. Notably, the genomic responses were observed at concentrations significantly lower than levels found at the environmental collection sites. These data demonstrate that metal mixtures increase the expression of gene biomarkers in placental JEG-3 cells in a synergistic manner. Taken together, the data suggest that toxic metals that co-occur may induce detrimental health effects that are currently underestimated when analyzed as single metals.
Chemical Research in Toxicology | 2015
Julia E. Rager; Sloane K. Tilley; Samantha E. Tulenko; Lisa Smeester; Paul D. Ray; Andrew E. Yosim; Jenna M. Currier; María C. Ishida; M.C. González-Horta; Blanca Sánchez-Ramírez; Lourdes Ballinas-Casarrubias; Daniela S. Gutiérrez-Torres; Zuzana Drobná; Luz M. Del Razo; Gonzalo García-Vargas; William Y. Kim; Yi Hui Zhou; Fred A. Wright; Miroslav Stýblo; Rebecca C. Fry
There is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species. A set of 49 differentially methylated genes was identified with increased promoter methylation associated with EUC tAs, iAs, and/or monomethylated As (MMAs) enriched for their roles in metabolic disease and cancer. Notably, no genes had differential methylation associated with EUC dimethylated As (DMAs), suggesting that DMAs may influence DNA methylation-mediated urothelial cell responses to a lesser extent than iAs or MMAs. Further analysis showed that 22 of the 49 arsenic-associated genes (45%) are also differentially methylated in bladder cancer tissue identified using The Cancer Genome Atlas repository. Both the arsenic- and cancer-associated genes are enriched for the binding sites of common transcription factors known to play roles in carcinogenesis, demonstrating a novel potential mechanistic link between iAs exposure and bladder cancer.
Scientific Reports | 2018
Maedeh Roushan; Zubair Azad; Saeid Movahed; Paul D. Ray; Gideon Livshits; Shuang Fang Lim; Keith Weninger; Robert Riehn
We report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass. However, cooperative interactions of proteins with the DNA can lead to directed motion of DNA molecules inside the nanochannel. Here we show directed motion in this configuration for three different proteins (T4 DNA ligase, MutS, E. coli DNA ligase) in the presence of their energetic co-factors (ATP, NAD+).
Systems Biology in Toxicology and Environmental Health#R##N#From the Genome to the Epigenome | 2015
Paul D. Ray; Rebecca C. Fry
Discerning cellular responses to environmental contaminants requires a basic understanding of the molecular processes of the cell. Metabolomic, transcriptomic, epigenomic, and proteomic responses can be analyzed in tandem to develop a comprehensive working model that predicts how complex biological systems respond to toxicant exposure. These quantitative outputs are the measurable alterations in metabolite levels, gene expression profiles, epigenetic signatures, and the protein expression patterns of the cell. This chapter provides a brief overview of the constituents, organization, and homeostatic processes of the eukaryotic cell, with a focus on the molecular mechanisms that provide quantitative inputs useful for a systems biological perspective. A working knowledge of molecular biology will facilitate an understanding of the molecular processes disrupted by toxicants and an understanding of the biological implications of toxicant exposure.