Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul D. Walker is active.

Publication


Featured researches published by Paul D. Walker.


Pharmacology, Biochemistry and Behavior | 2005

Dopamine D1 and D2 receptor contributions to L-DOPA-induced dyskinesia in the dopamine-depleted rat

Jennifer L. Taylor; Christopher Bishop; Paul D. Walker

Using a rat model of L-DOPA-induced dyskinesia (LID), the contributions of dopamine D1 and D2 receptors to axial, limb, and orolingual (ALO) abnormal involuntary movements (AIMs) elicited by L-DOPA were examined. Chronic L-DOPA-treated rats received the D1 receptor antagonist SCH23390 (0.01, 0.1, and 1.0 mg/kg; i.p.), the D2 receptor antagonist Eticlopride (0.01, 0.1, and 1.0 mg/kg; i.p.), a mixture of both antagonists (0.01, 0.1, 1.0 mg/kg each; i.p.), or vehicle 30 min prior to L-DOPA (6 mg/kg; i.p.)+Benserazide (15 mg/kg; i.p.). SCH23390 (0.1 and 1.0 mg/kg) significantly reduced axial and limb AIMs, while the same doses of Eticlopride significantly decreased axial, limb, and orolingual AIMs. Co-administration of SCH23390+Eticlopride significantly reduced axial (0.01, 0.1 and 1.0 mg/kg), limb (0.1 and 1.0 mg/kg), and orolingual (0.1 and 1.0 mg/kg) AIMs. These results indicate the importance of D1 and D2 receptors to LID and further validate the rat AIMs model.


Neuropharmacology | 2011

Role of the primary motor cortex in l-DOPA-induced dyskinesia and its modulation by 5-HT1A receptor stimulation

Corinne Y. Ostock; Kristin B. Dupre; Karen L. Eskow Jaunarajs; Hannah Walters; Jessica A. George; David M. Krolewski; Paul D. Walker; Christopher Bishop

While serotonin 5-HT1A receptor (5-HT1AR) agonists reduce L-DOPA-induced dyskinesias (LID) by normalizing activity in the basal ganglia neurocircuitry, recent evidence suggests putative 5-HT1AR within the primary motor cortex (M1) may also contribute. To better characterize this possible mechanism, c-fos immunohistochemistry was first used to determine the effects of systemic administration of the full 5-HT1AR agonist ±8-OH-DPAT on L-Dopa-induced immediate early gene expression within M1 and the prefrontal cortex (PFC) of rats with unilateral medial forebrain bundle (MFB) dopamine (DA) lesions. Next, in order to determine if direct stimulation of 5-HT1AR within M1 attenuates the onset of LID, rats with MFB lesions were tested for L-Dopa-induced abnormal involuntary movements (AIMs) and rotations following M1 microinfusions of ±8-OH-DPAT with or without coadministration of the 5-HT1AR antagonist WAY100635. Finally, ±8-OH-DPAT was infused into M1 at peak dyskinesia to determine if 5-HT1AR stimulation attenuates established L-Dopa-induced AIMs and rotations. While no treatment effects were seen within the PFC, systemic ±8-OH-DPAT suppressed L-Dopa-induced c-fos within M1. Intra-M1 5-HT1AR stimulation diminished the onset of AIMs and this effect was reversed by WAY100635 indicating receptor specific effects. Finally, continuous infusion of ±8-OH-DPAT into M1 at peak dyskinesia alleviated L-Dopa-induced AIMs. Collectively, these findings support an integral role for M1 in LID and its modulation by local 5-HT1AR.


Journal of Neuroscience Research | 2009

Contribution of the Striatum to the Effects of 5-HT1A Receptor Stimulation in L-DOPA-treated Hemiparkinsonian Rats

Christopher Bishop; David M. Krolewski; Karen L. Eskow; Christopher J. Barnum; Kristin B. Dupre; Terrence Deak; Paul D. Walker

Clinical and experimental studies implicate the use of serotonin (5‐HT)1A receptor agonists for the reduction of L‐3,4‐dihydroxyphenylalanine (L‐DOPA)‐induced dyskinesia (LID). Although raphe nuclei likely play a role in these antidyskinetic effects, an unexplored population of striatal 5‐HT1A receptors (5‐HT1AR) may also contribute. To better characterize this mechanism, L‐DOPA‐primed hemiparkinsonian rats received the 5‐HT1AR agonist ±8‐OH‐DPAT (0, 0.1, 1.0 mg/kg, i.p.) with or without cotreatment with the 5‐HT1AR antagonist WAY100635 (0.5 mg/kg, i.p.) 5 min after L‐DOPA, after which abnormal involuntary movements (AIMs), rotations, and forelimb akinesia were quantified. To establish the effects of 5‐HT1AR stimulation on L‐DOPA‐induced c‐fos and preprodynorphin (PPD) mRNA within the dopamine‐depleted striatum, immunohistochemistry and real‐time reverse transcription polymerase chain reaction, respectively, were used. Finally, to determine the contribution of striatal 5‐HT1AR to these effects, L‐DOPA‐primed hemiparkinsonian rats received bilateral intrastriatal microinfusions of ±8‐OH‐DPAT (0, 5, or 10 μg/side), WAY100635 (5 μg/side), or both (10 μg + 5 μg/side) 5 min after L‐DOPA, after which AIMs and rotations were examined. Systemic ±8‐OH‐DPAT dose‐ and receptor‐dependently attenuated L‐DOPA‐mediated AIMs and improved forelimb akinesia. Striatal c‐fos immunoreactivity and PPD mRNA ipsilateral to the lesion were strongly induced by L‐DOPA, while ±8‐OH‐DPAT suppressed these effects. Finally, intrastriatal infusions of ±8‐OH‐DPAT reduced AIMs while coinfusion of WAY100635 reversed its antidyskinetic effect. Collectively, these results support the hypothesis that the cellular and behavioral properties of 5‐HT1AR agonists are conveyed in part via a population of functional 5‐HT1AR within the striatum.


European Journal of Neuroscience | 2006

MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation

Christopher Bishop; Jennifer L. Taylor; Donald M. Kuhn; Karen L. Eskow; John Y. Park; Paul D. Walker

Chronic l‐3,4‐dihydroxyphenylalanine (L‐DOPA) pharmacotherapy in Parkinsons disease is often accompanied by the development of abnormal and excessive movements known as dyskinesia. Clinical and experimental studies indicate that indirect serotonin agonists can suppress dyskinesia without affecting the efficacy of L‐DOPA. While the mechanism by which these effects occur is not clear, recent research suggests that serotonin 5‐HT1A receptors may play a pivotal role. To test this, male Sprague–Dawley rats with unilateral 6‐hydroxydopamine medial forebrain bundle lesions received 1 week of daily treatment with L‐DOPA (12 mg/kg, i.p.) plus benserazide (15 mg/kg, i.p.). Beginning on the 8th day of treatment and every 3rd or 4th day thereafter, rats were pretreated with vehicle (0.9% NaCl), the serotonin and dopamine releaser 3,4‐methylenedioxymethamphetamine (MDMA; 0.25 or 2.5 mg/kg, i.p.) or the serotonin releaser fenfluramine (FEN; 0.25 or 2.5 mg/kg, i.p.) 5 min prior to L‐DOPA, after which abnormal involuntary movements (AIMs) and rotations were quantified every 20th minute for 2 h. Pretreatment with 2.5 mg/kg of either MDMA or FEN reduced AIMs. To determine the contribution of the 5‐HT1A receptor to these effects, another group of L‐DOPA‐primed 6‐hydroxydopamine‐lesioned rats were pretreated with the 5‐HT1A antagonist WAY100635 (0.5 mg/kg, i.p.), MDMA + WAY100635 (2.5 + 0.5 mg/kg, i.p.) or FEN + WAY100635 (2.5 + 0.5 mg/kg, i.p.) 5 min prior to L‐DOPA and subsequent AIMs and rotation tests. The antidyskinetic effects of MDMA and FEN were reversed by cotreatment with WAY100635. These results suggest that 5‐HT‐augmenting compounds such as MDMA and FEN probably convey antidyskinetic properties in part via stimulation of 5‐HT1A receptors.


Experimental Neurology | 1999

Effects of the Serotonin Synthesis Inhibitor p-CPA on the Expression of the Crossed Phrenic Phenomenon 4 h Following C2 Spinal Cord Hemisection

Scott D. Hadley; Paul D. Walker; Harry G. Goshgarian

The present study assesses the effects of para-chlorophenylalanine (p-CPA), a serotonin-depleting drug, on the recovery of respiratory-related activity in the phrenic nerve induced by asphyxia 4 h following ipsilateral C2 hemisection in young adult rats. HPLC analysis was used to quantify levels of serotonin (5-HT), dopamine (DA), norepinephrine, and the 5-HT metabolite, 5-hydroxyindoleacetic acid, in the C4 segment of the spinal cord, all of which were significantly lower in p-CPA-treated hemisected rats compared to hemisected controls receiving saline. Hemisection alone was found to significantly increase 5-HT levels and significantly decrease DA levels compared to normal controls. Eight of eight saline-injected rats expressed recovery of respiratory-related activity in the ipsilateral phrenic nerve during asphyxia 4 h following hemisection, while only 4/8 rats in the p-CPA-treated group expressed recovery in the ipsilateral nerve. Quantification of integrated phrenic nerve wave-forms indicated that the mean amplitude of respiratory-related activity in the ipsilateral phrenic nerve was significantly lower in p-CPA-treated rats than in saline controls. In addition, saline controls demonstrated significant increases in mean respiratory frequency and mean amplitude of contralateral phrenic nerve activity during asphyxia, compared to normocapnia. However, p-CPA-treated rats did not express significant differences in either mean respiratory frequency or mean amplitude of integrated respiratory wave-forms during asphyxia, compared to normocapnia. The results suggest that p-CPA treatment attenuates the recovery of respiratory-related activity in the phrenic nerve 4 h following ipsilateral C2 hemisection and attenuates asphyxia-induced increases in respiratory frequency and respiratory burst amplitude recorded from the contralateral phrenic nerve.


Experimental Neurology | 2001

Distribution of Serotonin 2A and 2C Receptor mRNA Expression in the Cervical Ventral Horn and Phrenic Motoneurons Following Spinal Cord Hemisection

Gregory J. Basura; Shi Yi Zhou; Paul D. Walker; Harry G. Goshgarian

Cervical spinal cord injury leads to a disruption of bulbospinal innervation from medullary respiratory centers to phrenic motoneurons. Animal models utilizing cervical hemisection result in inhibition of ipsilateral phrenic nerve activity, leading to paralysis of the hemidiaphragm. We have previously demonstrated a role for serotonin (5-HT) as one potential modulator of respiratory recovery following cervical hemisection, a mechanism that likely occurs via 5-HT2A and/or 5-HT2C receptors. The present study was designed to specifically examine if 5-HT2A and/or 5-HT2C receptors are colocalized with phrenic motoneurons in both intact and spinal-hemisected rats. Adult female rats (250-350 g; n = 6 per group) received a left cervical (C2) hemisection and were injected with the fluorescent retrograde neuronal tracer Fluorogold into the left hemidiaphragm. Twenty-four hours later, animals were killed and spinal cords processed for in situ hybridization and immunohistochemistry. Using (35)S-labeled cRNA probes, cervical spinal cords were probed for 5-HT2A and 5-HT2C receptor mRNA expression and double-labeled using an antibody to Fluorogold to detect phrenic motoneurons. Expression of both 5-HT2A and 5-HT2C receptor mRNA was detected in motoneurons of the cervical ventral horn. Despite positive expression of both 5-HT2A and 5-HT2C receptor mRNA-hybridization signal over phrenic motoneurons, only 5-HT2A silver grains achieved a signal-to-noise ratio representative of colocalization. 5-HT2A mRNA levels in identified phrenic motoneurons were not significantly altered following cervical hemisection compared to sham-operated controls. Selective colocalization of 5-HT2A receptor mRNA with phrenic motoneurons may have implications for recently observed 5-HT2A receptor-mediated regulation of respiratory activity and/or recovery in both intact and injury-compromised states.


Brain Research | 1996

Preprotachykinin and preproenkephalin mRNA expression within striatal subregions in response to altered serotonin transmission

Paul D. Walker; John G Capodilupo; William A. Wolf; Leon Carlock

The effects of lowered serotonin (5-hydroxytryptamine; 5-HT) neurotransmission on preprotachykinin (PPT) and preproenkephalin (PPE) mRNA levels were examined in subregions of the striatum. Adult male rats were treated systemically with para-chlorophenylalanine (pCPA; 350 mg/kg single i.p. injection) which reduced forebrain 5-HT amounts to approximately 20% of saline-injected controls at 24 and 48 h. As measured by Northern analysis, PPT and PPE mRNA levels were elevated 50% and 160% respectively in the anterior ventromedial striatum (region included nucleus accumbens). PPT mRNA levels were raised 90% in posterior striatum (at the level of the globus pallidus) by 48 h post-pCPA injection. To determine if increased PPT and PPE mRNA levels represented a transient response to brief 5-HT inhibition, additional experiments were performed to provide continual suppression of 5-HT within the striatum. First, rats received daily intraperitoneal injections of saline or the 5-HT1A receptor agonist, 8-OH-DPAT (1 mg/kg), for 7 days to reduce 5-HT release from raphestriatal terminals. In a parallel experiment, the serotonin neurotoxin, 5,7-dihydroxytryptamine (5,7-DHT, 5 micrograms), was stereotaxically injected into the striatum as a means to permanently remove 5-HT terminals. Although levels of each mRNA species were differentially sensitive to 5,7-DHT or 8-OH-DPAT, PPT and PPE mRNAs were lowered between 30-55% within the anterior dorsolateral and ventromedial striatum. Although these results support previous studies suggesting an overall positive regulatory role of serotonin on striatal tachykinin biosynthesis, PPT and PPE gene regulation in certain striatal subregions may by differentially sensitive to lowered 5-HT neurotransmission. This suggestion is supported by observations that acute systemic stimulation of 5-HT2A/C receptors with DOI (7 mg/kg single i.p. injection) raised PPT and PPE mRNA levels within anterior dorsolateral (30-60%) and posterior (100-200%) striata, but not within the anterior ventromedial striatum.


Neuropharmacology | 2006

Serotonin 2A receptor antagonist treatment reduces dopamine D1 receptor-mediated rotational behavior but not L-DOPA-induced abnormal involuntary movements in the unilateral dopamine-depleted rat.

Jennifer L. Taylor; Christopher Bishop; Thomas Ullrich; Kenner C. Rice; Paul D. Walker

Previous experiments have demonstrated that serotonin (5-HT) 2A receptor antagonists suppress hyperkinetic behaviors associated with dopamine (DA) D1 receptor supersensitivity in rats with 6-hydroxydopamine (6-OHDA) lesions. Since l-DOPA induced dyskinesia (LID) may be mediated by over-sensitive D1-mediated signaling, the present study examined the effects of the selective 5-HT2A antagonist M100907 on LID behaviors in DA-depleted rats. Adult male Sprague-Dawley rats with unilateral 6-OHDA lesions received daily l-DOPA treatments to produce dyskinetic behaviors as measured by abnormal involuntary movements (AIMs) testing. In these animals, M100907 (0.01, 0.1 or 1.0mg/kg, ip) given 30 min before l-DOPA did not alter the appearance or intensity of AIMs behaviors. Because l-DOPA induced AIMs in rats are dependent upon D1 and D2 receptor activation, a second study was performed to determine if M100907 could suppress D1- or D2-mediated rotational behaviors. Contralateral rotations induced by the D1 agonist SKF82958 were significantly reduced by pre-treatment with M100907. However, M100907 was ineffective in reducing rotations induced by the D2 agonist quinpirole. The finding that M100907 suppresses rotations induced by D1, but not D2, agonists may provide a partial explanation for the lack of effect of a selective 5-HT2A antagonist on l-DOPA-induced AIMs behaviors.


Experimental Neurology | 1999

Effects of serotonin inhibition on neuronal and astrocyte plasticity in the phrenic nucleus 4 h following C2 spinal cord hemisection.

Scott D. Hadley; Paul D. Walker; Harry G. Goshgarian

C2 spinal cord hemisection results in synaptic and astroglial changes in the phrenic nucleus which have been associated with the recovery of the ipsilateral hemidiaphragm during expression of the crossed phrenic phenomenon. As part of our ongoing analysis of the neurotransmitters involved, the present study investigated the effects of systemic administration of para-chlorophenylalanine (p-CPA), a serotonin (5-HT) synthesis inhibitor, on plasticity in the rat phrenic nucleus 4 h following C2 hemisection. Hemisected control rats demonstrated typical morphological changes in the ipsilateral phrenic nucleus including: (1) an increased number and length of synaptic active zones and (2) an increased number and length of dendrodendritic membrane appositions. p-CPA treatment 3 days prior to hemisection reduced 5-HT levels and resulted in an attenuation of these changes in the ipsilateral phrenic nucleus 4 h following hemisection compared to hemisected controls. In addition, p-CPA treatment attenuated injury-induced alterations in immunohistochemical staining of glial fibrillary acidic protein (GFAP), although Western blot analysis demonstrated that overall levels of GFAP did not differ significantly between groups. The results suggest that inhibition of 5-HT synthesis by p-CPA attenuates hemisection-induced plasticity in the phrenic nucleus 4 h following an ipsilateral C2 hemisection.


Neuroscience | 2003

Combined intrastriatal dopamine D1 and serotonin 5-HT2 receptor stimulation reveals a mechanism for hyperlocomotion in 6-hydroxydopamine- lesioned rats

C Bishop; Paul D. Walker

Loss of dopaminergic innervation to the striatum increases the sensitivity of dopamine (DA) D1 and serotonin (5-HT) 5-HT2 receptor signaling. Previous work from our laboratory has shown that systemic co-administration of D1 and 5-HT2 receptor agonists leads to the synergistic overexpression of striatal preprotachykinin mRNA levels in the DA-depleted, but not intact animals. In the present study, we examined this mechanism as related to locomotor behavior. Adult male Sprague-Dawley rats were subject to bilateral i.c.v. 6-hydroxydopamine (6-OHDA; 200 microg in 10 microl/side) or vehicle (0.9% saline and 0.1% ascorbic acid). After 3 weeks, rats were tested for locomotor responses to bilateral intrastriatal infusions of vehicle (0.9% NaCl), the D1 agonist SKF82958 [(+/-)6-chloro-7,8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetra-hydro-(1H)-3-benzazepine hydrobromide; 0.1, 1.0 or 10.0 microg/side], the 5-HT2 agonist DOI [(+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane; 0.1, 1.0 or 10.0 microg/side] or subthreshold doses of DOI and SKF82958 (0.1 microg+0.1 microg in 0.8 microl/side). Rats with DA loss demonstrated supersensitive locomotor responses to SKF82958, but not DOI. Combined administration of subthreshold SKF82958 and DOI doses (0.1 microg+0.1 microg) synergistically increased locomotor behavior only in 6-OHDA-lesioned rats. These effects were blocked by either the D1 antagonist SCH23390 3-methyl-1-phenyl-2,3,4,5-tetrahydro-7-chloro-8-hydroxy-(1H)-3-benzazepine or the 5-HT2 antagonist ritanserin (each 1.0 microg in 0.8 microl/side). The results of this study suggest that the behavioral synergy induced by local co-stimulation of D1 and 5-HT2 receptors within the 6-OHDA-lesioned striatum may lead to hyperkinesias that can occur with continued pharmacological treatment of Parkinsons disease.

Collaboration


Dive into the Paul D. Walker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge