Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul DiZio is active.

Publication


Featured researches published by Paul DiZio.


Experimental Brain Research | 1999

Precision contact of the fingertip reduces postural sway of individuals with bilateral vestibular loss.

James R. Lackner; Paul DiZio; John J. Jeka; Fay B. Horak; David E. Krebs; Ely Rabin

Abstract Contact of the hand with a stationary surface attenuates postural sway in normal individuals even when the level of force applied is mechanically inadequate to dampen body motion. We studied whether subjects without vestibular function would be able to substitute contact cues from the hand for their lost labyrinthine function and be able to balance as well as normal subjects in the dark without finger contact. We also studied the relative contribution of sight of the test chamber to the two groups. Subjects attempted to maintain a tandem Romberg stance for 25 s under three levels of fingertip contact: no contact; light-touch contact, up to 1 N (≈100 g) force; and unrestricted contact force. Both eyes open and eyes closed conditions were evaluated. Without contact, none of the vestibular loss subjects could stand for more than a few seconds in the dark without falling; all the normals could. The vestibular loss subjects were significantly more stable in the dark with light touch of the index finger than the normal subjects in the dark without touch. They also swayed less in the dark with light touch than when permitted sight of the test chamber without touch, and less with sight and touch than just sight. The normal subjects swayed less in the dark with touch than without, and less with sight and touch than sight alone. These findings show that during quiet stance light touch of the index finger with a stationary surface can be as effective or even more so than vestibular function for minimizing postural sway.


Experimental Brain Research | 2000

Human orientation and movement control in weightless and artificial gravity environments

James R. Lackner; Paul DiZio

Abstract Our goal is to summarize what has been learned from studies of human movement and orientation control in weightless conditions. An understanding of the physics of weightlessness is essential to appreciate the dramatic consequences of the absence of continuous contact forces on orientation and posture. Eye, head, arm, leg, and whole body movements are discussed, but only experiments whose results seem relatively incontrovertible are included. Emphasis is placed on distinguishing between virtually immediate adaptive compensations to weightlessness and those with longer time courses. The limitations and difficulties of performing experiments in weightless conditions are highlighted. We stress that when astronauts and cosmonauts return from extended space flight they do so with both physical ”plant” and neural ”controller” structurally and functionally altered. Recent developments in adapting humans to artificial gravity conditions are discussed as a way of maintaining sensory-motor and structural integrity in extended missions involving transitions between different force environments.


Trends in Cognitive Sciences | 2000

Aspects of body self-calibration

James R. Lackner; Paul DiZio

The representation of body orientation and configuration is dependent on multiple sources of afferent and efferent information about ongoing and intended patterns of movement and posture. Under normal terrestrial conditions, we feel virtually weightless and we do not perceive the actual forces associated with movement and support of our body. It is during exposure to unusual forces and patterns of sensory feedback during locomotion that computations and mechanisms underlying the ongoing calibration of our body dimensions and movements are revealed. This review discusses the normal mechanisms of our position sense and calibration of our kinaesthetic, visual and auditory sensory systems, and then explores the adaptations that take place to transient Coriolis forces generated during passive body rotation. The latter are very rapid adaptations that allow body movements to become accurate again, even in the absence of visual feedback. Muscle spindle activity interpreted in relation to motor commands and internally modeled reafference is an important component in permitting this adaptation. During voluntary rotary movements of the body, the central nervous system automatically compensates for the Coriolis forces generated by limb movements. This allows accurate control to be maintained without our perceiving the forces generated.


Experimental Brain Research | 1998

Auditory cues for orientation and postural control in sighted and congenitally blind people

Randolph D. Easton; Anthony J. Greene; Paul DiZio; James R. Lackner

Abstract This study assessed whether stationary auditory information could affect body and head sway (as does visual and haptic information) in sighted and congenitally blind people. Two speakers, one placed adjacent to each ear, significantly stabilized center-of-foot-pressure sway in a tandem Romberg stance, while neither a single speaker in front of subjects nor a head-mounted sonar device reduced center-of-pressure sway. Center-of-pressure sway was reduced to the same level in the two-speaker condition for sighted and blind subjects. Both groups also evidenced reduced head sway in the two-speaker condition, although blind subjects’ head sway was significantly larger than that of sighted subjects. The advantage of the two-speaker condition was probably attributable to the nature of distance compared with directional auditory information. The results rule out a deficit model of spatial hearing in blind people and are consistent with one version of a compensation model. Analysis of maximum cross-correlations between center-of-pressure and head sway, and associated time lags suggest that blind and sighted people may use different sensorimotor strategies to achieve stability.


Brain Research | 1992

Gravitoinertial force level affects the appreciation of limb position during muscle vibration

James R. Lackner; Paul DiZio

Illusory motion and displacement of the restrained forearm can be elicited by vibrating the biceps brachii or triceps brachii muscle. We measured the influence of gravitoinertial force level on these perceptual responses to vibration during parabolic flight maneuvers where normal (1G) and high force (1.8G) background levels alternated with microgravity (0G). Subjects indicated the apparent forearm position of the vibrated arm with the other forearm and also made verbal reports. Biceps brachii vibration induced illusory extension of the forearm and triceps brachii, illusory flexion; these apparent motions and displacements were highly G force-dependent being enhanced at 1.8G and diminished at 0G relative to normal 1G force level. These alterations are discussed in terms of vestibulo-spinal and propriospinal influences on alpha-gamma motoneuronal control of muscle tone and the varying requirements for postural load support in different force backgrounds. Their implications for the control and appreciation of limb movements during exposure to different G force levels are also described.


Presence: Teleoperators & Virtual Environments | 1992

Spatial orientation, adaptation, and motion sickness in real and virtual environments

Paul DiZio; James R. Lackner

Reason and Brand (1975) noted that motion sickness occurs in many situations involving either passive body motion or active interaction with the world via indirect sensorimotor interfaces (e.g., prism spectacles). As might be expected, motion sickness is being reported in VEs that involve apparent self-motion through space, the best known examples being flight simulators (Kennedy et al., 1990). The goals of this paper are to introduce the motion-sickness symptomatology; to outline some concepts that are central to theories of motion sickness, spatial orientation, and adaptation; and to discuss the implications of some trends in VE research and development.


Attention Perception & Psychophysics | 1986

Perceived orientation, motion, and configuration of the body during viewing of an off-vertical, rotating surface

Paul DiZio; James R. Lackner

Dynamic patterns of activity from multiple receptor systems, as well as efferent signals associated with voluntary movements, influence perceived body motion. The experiment to be described explored how these factors interrelate in influencing apparent body motion. It involved exposing stationary, reclining subjects to a patterned surface which rotated around a vertical or an off-vertical axis. We were able to create situations in which the combined patterns of visual, otolithic, somatosensory, and semicircular canal stimulation actually present were not consistent with body motion in a terrestrial environment. Nevertheless, all of our subjects experienced self-rotation and displacement around a vertical axis. A variety of changes in apparent body orientation, body configuration, and slant of the visual surface occurred concurrently with the elicitation of apparent body rotation. These perceptual remappings were such as to be consistent both with the rotary visual stimulation present and with the absence of changes in otolithic and somatosensory inputs. They were achieved through a reinterpretation of the static otolithic, somatosensory, and proprioceptive signals present. Our findings demonstrate that perceived body motion also depends on representations of what combinations of sensory input are possible in a terrestrial environment.


Experimental Brain Research | 2006

Localization of the subjective vertical during roll, pitch, and recumbent yaw body tilt

Simone B. Bortolami; Alberto Pierobon; Paul DiZio; James R. Lackner

Localization of the subjective vertical during body tilt in pitch and in roll has been extensively studied because of the relevance of these axes for aviation and control of posture. Studies of yaw orientation relative to gravity are lacking. Our goal was to perform the first thorough evaluation of static orientation in recumbent yaw and to collect as efficiently as possible roll and pitch orientation data which would be consistent with the literature, using the same technique as our yaw tests. This would create the first comprehensive, coherent data set for all three axes suitable for quantitative tri-dimensional modeling of spatial orientation. We tested localization of the vertical for subjects tilted in pitch (−100° to +130°), in roll (−90° to +90°), and in yaw while recumbent (−80° to +80°). We had subjects point a gravity-neutral probe to the gravitational vertical (haptically indicated vertical) and report verbally their perceived tilt. Subjects underestimated their body tilts in recumbent yaw and pitch and overestimated their tilts in roll. The haptic settings for pitch and roll were consistent with data in the literature obtained with haptic and visual indications. Our data constitute the first tri-dimensional assessment of the subjective vertical using a common measurement procedure and provide the basis for the tri-axial modeling of vestibular function presented in the companion paper.


Experimental Brain Research | 1988

The effects of gravitoinertial force level and head movements on post-rotational nystagmus and illusory after-rotation

Paul DiZio; James R. Lackner

SummaryThe effect of Coriolis, cross-coupled stimulation on the vestibuloocular reflex and the elicitation of motion sickness depends on background gravitoinertial force level (DiZio et al. 1986, 1987; Graybiel et al. 1977; Lackner and Graybiel 1984, 1986). We have explored whether this response dependency is related to the unusual patterns of sensorimotor activity present during exposure to non-terrestrial gravitoinertial force levels, to alterations in the encoding of head movements in different gravitoinertial force environments, or to some combination thereof. Blindfolded subjects were exposed to sudden stops after constant velocity, vertical z-axis rotation, sometimes with and sometimes without post-rotational head movements, in the 0 G, 1 G, and 1.8 G force phases of parabolic flight. After sudden stops without head movements, the time constant of decay of post-rotational nystagmus was significantly lower in 0 G than in 1 G and lower to a smaller extent in 1.8 G. Post-rotational head movements decreased the decay time constants in 1 G and in 1.8 G, but not in free fall. The same pattern emerged for the duration of illusory after-rotation. Systematic changes were not found in the peak slow phase velocity of nystagmus. These results suggest that tonic levels of otolithic and somatosensory activity in combination with canalicular, cervical, and motor activity regulate the velocity storage mechanism of the horizontal vestibuloocular reflex (Cohen et al. 1977; Raphan et al. 1979) and sensations of after-rotation. These same factors are likely to be important etiological elements in space motion sickness.


Current Opinion in Neurobiology | 1996

Motor function in microgravity: movement in weightlessness

James R. Lackner; Paul DiZio

Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (<1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.

Collaboration


Dive into the Paul DiZio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ely Rabin

New York Institute of Technology College of Osteopathic Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge