Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul E. Bourdeau is active.

Publication


Featured researches published by Paul E. Bourdeau.


Ecology | 2009

Prioritized phenotypic responses to combined predators in a marine snail

Paul E. Bourdeau

Although many species face numerous predators in nature, the combined impact of multiple predators on the inducible defenses of prey has rarely been studied. Prey may respond with an intermediate phenotype that balances the risk from several sources or may simply respond to the most dangerous predator. I examined the separate and combined effects of the presence of shell-breaking (crabs, Cancer productus) and shell-entry (seastars, Pisaster ochraceus) predators fed conspecific snails on the defensive shell morphology and antipredator behavior of a marine snail (Nucella lamellosa). When exposed to each feeding predator separately, snails responded with a combination of morphological defenses that reflect the attack mode of the predator and a generalized behavioral response. Snails responded to feeding crabs by increasing refuge use and producing a thick, rotund shell. Snails responded to feeding seastars with increased refuge use but produced elongate shells with high spires that allowed for greater retraction of the soft tissue. Seastar-induced phenotypes reduced susceptibility to seastars relative to crab-induced phenotypes, but crab-induced phenotypes did not significantly reduce susceptibility to crabs, indicating an asymmetrical functional trade-off. When feeding predators were combined, snails produced a morphological phenotype similar to that expressed in the presence of the predator that imposed the highest mortality at the population level, suggesting that predator-induced morphology was prioritized according to predation risk. These results suggest that prioritizing conflicting defenses according to predator danger may be a common strategy for prey responding to combined predators, particularly in conjunction with generalized behavioral responses that reduce overall risk in multiple-predator environments.


Proceedings of the Royal Society of London B: Biological Sciences | 2010

An inducible morphological defence is a passive by-product of behaviour in a marine snail

Paul E. Bourdeau

Many organisms have evolved inducible defences in response to spatial and temporal variability in predation risk. These defences are assumed to incur large costs to prey; however, few studies have investigated the mechanisms and costs underlying these adaptive responses. I examined the proximate cause of predator-induced shell thickening in a marine snail (Nucella lamellosa) and tested whether induced thickening leads to an increase in structural strength. Results indicate that although predators (crabs) induce thicker shells, the response is a passive by-product of reduced feeding and somatic growth rather than an active physiological response to predation risk. Physical tests indicate that although the shells of predator-induced snails are significantly stronger, the increase in performance is no different than that of snails with limited access to food. Increased shell strength is attributable to an increase in the energetically inexpensive microstructural layer rather than to material property changes in the shell. This mechanism suggests that predator-induced shell defences may be neither energetically nor developmentally costly. Positive correlations between antipredator behaviour and morphological defences may explain commonly observed associations between growth reduction and defence production in other systems and could have implications for the evolutionary potential of these plastic traits.


Oecologia | 2010

Cue reliability, risk sensitivity and inducible morphological defense in a marine snail

Paul E. Bourdeau

Reliable cues that communicate current or future environmental conditions are a requirement for the evolution of adaptive phenotypic plasticity, yet we often do not know which cues are responsible for the induction of particular plastic phenotypes. I examined the single and combined effects of cues from damaged prey and predator cues on the induction of plastic shell defenses and somatic growth in the marine snail Nucella lamellosa. Snails were exposed to chemical risk cues from a factorial combination of damaged prey presented in isolation or consumed by predatory crabs (Cancer productus). Water-borne cues from damaged conspecific and heterospecific snails did not affect plastic shell defenses (shell mass, shell thickness and apertural teeth) or somatic growth in N. lamellosa. Cues released by feeding crabs, independent of prey cue, had significant effects on shell mass and somatic growth, but only crabs consuming conspecific snails induced the full suite of plastic shell defenses in N. lamellosa and induced the greatest response in all shell traits and somatic growth. Thus the relationship between risk cue and inducible morphological defense is dependent on which cues and which morphological traits are examined. Results indicate that cues from damaged conspecifics alone do not trigger a response, but, in combination with predator cues, act to signal predation risk and trigger inducible defenses in this species. This ability to “label” predators as dangerous may decrease predator avoidance costs and highlights the importance of the feeding habits of predators on the expression of inducible defenses.


Biological Invasions | 2011

The invasive predator Bythotrephes induces changes in the vertical distribution of native copepods in Lake Michigan

Paul E. Bourdeau; Kevin L. Pangle; Scott D. Peacor

Invasive predators can have large negative effects on native prey populations. The susceptibility of native prey to invasive predators may depend on their ability to respond behaviorally to the presence of these non-native predators. In a field survey conducted in Lake Michigan over several years, we found that high densities of the invasive predatory cladoceran Bythotrephes were correlated with lower vertical distributions of some species and age classes of native copepods; moving from inhabiting primarily the epiliminion at low Bythotrephes density to primarily the hypolimnion at high Bythotrephes density. Five groups showed this pattern; diaptomid copepodites, adult cyclopoids, Diacyclops thomasi, and the adult diaptomids Leptodiaptomus ashlandi and L. minutus. In contrast, Bythotrephes density was not correlated with the vertical distribution of copepod nauplii and adult L. sicilis. Laboratory experiments suggest that the changes in the vertical distribution in the field at high Bythothrephes are due to an inducible, plastic response to predation threat from Bythotrephes signaled by water-borne cues. Species that were lower in the field at high Bythotrephes densities responded behaviorally to water-borne cues from Bythotrephes by moving to lower levels of experimental water columns. These species included D. thomasi and L. minutus, with L. ashlandi displaying a non-significant trend in the same direction. In contrast, L. sicilis, which was not correlated with Bythotrephes density in the field, was unaffected by the water-borne cues. Differences in vertical distribution shifts among these native copepod species and life-history stages are likely due to species-specific differences in spatial overlap with Bythotrephes and their relative ability to migrate large distances or employ alternative avoidance strategies. The varied responses exhibited among the copepod groups likely alter their interactions with each other, their resources and other predators, thus revealing the complex effects Bythotrephes can have on invaded communities.


Ecology | 2013

Finely tuned response of native prey to an invasive predator in a freshwater system

Paul E. Bourdeau; Kevin L. Pangle; Emily M. Reed; Scott D. Peacor

Lack of shared evolutionary history reduces the expectation that native prey will detect and respond to invasive predators. Four mechanisms may explain the adaptive response that is nevertheless seen in various systems: prey may perceive the invasive predator through cue similarity with preexisting predators, cues of conspecifics eaten by the invasive predator, a learned response based on experience with the invasive predator (e.g., cue association), and cues from the invasive predator that are specific to it. We performed laboratory experiments in which zooplankton (Daphnia mendotae) responded adaptively to the zooplanktivore Bythotrephes longimanus (migrating downward), showed no response to taxonomically similar predatory cladocerans, and responded adaptively to more taxonomically distant native fish (migrating downward) and native shrimp (migrating upward). Conspecific cues associated with Bythotrephes predation actually reduced the response of D. mendotae to Bythotrephes. Combined with previous experiments that rule out learning, our experiments rule out the first three mechanisms above, demonstrating that D. mendotae respond to cues specific to and produced directly by Bythotrephes. This finely tuned response may be retained from an ancestral species that coevolved with Bythotrephes in its native range, or may have rapidly evolved due to strong selection by the invasive predator.


Heredity | 2015

What can aquatic gastropods tell us about phenotypic plasticity? A review and meta-analysis.

Paul E. Bourdeau; Roger K. Butlin; Christer Brönmark; T C Edgell; Jason T. Hoverman; Johan Hollander

There have been few attempts to synthesise the growing body of literature on phenotypic plasticity to reveal patterns and generalities about the extent and magnitude of plastic responses. Here, we conduct a review and meta-analysis of published literature on phenotypic plasticity in aquatic (marine and freshwater) gastropods, a common system for studying plasticity. We identified 96 studies, using pre-determined search terms, published between 1985 and November 2013. The literature was dominated by studies of predator-induced shell form, snail growth rates and life history parameters of a few model taxa, accounting for 67% of all studies reviewed. Meta-analyses indicated average plastic responses in shell thickness, shell shape, and growth and fecundity of freshwater species was at least three times larger than in marine species. Within marine gastropods, species with planktonic development had similar average plastic responses to species with benthic development. We discuss these findings in the context of the role of costs and limits of phenotypic plasticity and environmental heterogeneity as important constraints on the evolution of plasticity. We also consider potential publication biases and discuss areas for future research, indicating well-studied areas and important knowledge gaps.


Ecology and Evolution | 2016

Evidence of weaker phenotypic plasticity by prey to novel cues from non-native predators

Johan Hollander; Paul E. Bourdeau

Abstract A central question in evolutionary biology is how coevolutionary history between predator and prey influences their interactions. Contemporary global change and range expansion of exotic organisms impose a great challenge for prey species, which are increasingly exposed to invading non‐native predators, with which they share no evolutionary history. Here, we complete a comprehensive survey of empirical studies of coevolved and naive predator−prey interactions to assess whether a shared evolutionary history with predators influences the magnitude of predator‐induced defenses mounted by prey. Using marine bivalves and gastropods as model prey, we found that coevolved prey and predator‐naive prey showed large discrepancies in magnitude of predator‐induced phenotypic plasticity. Although naive prey, predominantly among bivalve species, did exhibit some level of plasticity – prey exposed to native predators showed significantly larger amounts of phenotypic plasticity. We discuss these results and the implications they may have for native communities and ecosystems.


Oikos | 2012

Predator-induced morphological defences as by-products of prey behaviour : a review and prospectus

Paul E. Bourdeau; Frank Johansson


Functional Ecology | 2011

Constitutive and inducible defensive traits in co‐occurring marine snails distributed across a vertical rocky intertidal gradient

Paul E. Bourdeau


Harmful Algae | 2008

The effects of a harmful alga on bivalve larval lipid stores

R. Przeslawski; Paul E. Bourdeau; Michael H. Doall; J. Pan; L. Perino; Dianna K. Padilla

Collaboration


Dive into the Paul E. Bourdeau's collaboration.

Top Co-Authors

Avatar

Scott D. Peacor

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Kevin L. Pangle

Central Michigan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emily M. Reed

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Frank Johansson

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

J. Pan

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge