Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul E. Fraser is active.

Publication


Featured researches published by Paul E. Fraser.


Nature | 2000

Aβ peptide immunization reduces behavioural impairment and plaquesin a model of Alzheimer's disease

Christopher Janus; Jacqueline Pearson; JoAnne McLaurin; Paul M. Mathews; Ying Jiang; Stephen D. Schmidt; M. Azhar Chishti; Patrick Horne; Donna Heslin; Janet French; Howard T.J. Mount; Ralph A. Nixon; Marc Mercken; Catherine Bergeron; Paul E. Fraser; Peter St George-Hyslop; David Westaway

Much evidence indicates that abnormal processing and extracellular deposition of amyloid-β peptide (Aβ), a proteolytic derivative of the β-amyloid precursor protein (βAPP), is central to the pathogenesis of Alzheimers disease (reviewed in ref. 1). In the PDAPP transgenic mouse model of Alzheimers disease, immunization with Aβ causes a marked reduction in burden of the brain amyloid. Evidence that Aβ immunization also reduces cognitive dysfunction in murine models of Alzheimers disease would support the hypothesis that abnormal Aβ processing is essential to the pathogenesis of Alzheimers disease, and would encourage the development of other strategies directed at the ‘amyloid cascade’. Here we show that Aβ immunization reduces both deposition of cerebral fibrillar Aβ and cognitive dysfunction in the TgCRND8 murine model of Alzheimers disease without, however, altering total levels of Aβ in the brain. This implies that either a ∼50% reduction in dense-cored Aβ plaques is sufficient to affect cognition, or that vaccination may modulate the activity/abundance of a small subpopulation of especially toxic Aβ species.


Nature | 2000

Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing

Gang Yu; Masaki Nishimura; Shigeki Arawaka; Diane Levitan; Lili Zhang; Anurag Tandon; You-Qiang Song; Ekaterina Rogaeva; Fusheng Chen; Toshitaka Kawarai; Agnes Supala; Lyne Levesque; Haung Yu; Dun Sheng Yang; Erin Holmes; Paul Milman; Yan Liang; Dong Mel Zhang; Dong Hong Xu; Christine Sato; Evgeny I. Rogaev; Marsha Smith; Christopher Janus; Yanni Zhang; Ruedl Aebersold; Lindsay A. Farrer; Sandro Sorbl; Amalia C. Bruni; Paul E. Fraser; Peter St George-Hyslop

Nicastrin, a transmembrane glycoprotein, forms high molecular weight complexes with presenilin 1 and presenilin 2. Suppression of nicastrin expression in Caenorhabditis elegans embryos induces a subset of notch/glp-1 phenotypes similar to those induced by simultaneous null mutations in both presenilin homologues of C. elegans (sel-12 and hop-1). Nicastrin also binds carboxy-terminal derivatives of β-amyloid precursor protein (βAPP), and modulates the production of the amyloid β-peptide (Aβ) from these derivatives. Missense mutations in a conserved hydrophilic domain of nicastrin increase Aβ42 and Aβ40 peptide secretion. Deletions in this domain inhibit Aβ production. Nicastrin and presenilins are therefore likely to be functional components of a multimeric complex necessary for the intramembranous proteolysis of proteins such as Notch/GLP-1 and βAPP.


Nature Genetics | 2007

The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease

Ekaterina Rogaeva; Yan Meng; Joseph H. Lee; Yongjun Gu; Toshitaka Kawarai; Fanggeng Zou; Taiichi Katayama; Clinton T. Baldwin; Rong Cheng; Hiroshi Hasegawa; Fusheng Chen; Nobuto Shibata; Kathryn L. Lunetta; Raphaelle Pardossi-Piquard; Christopher Bohm; Yosuke Wakutani; L. Adrienne Cupples; Karen T. Cuenco; Robert C. Green; Lorenzo Pinessi; Innocenzo Rainero; Sandro Sorbi; Amalia C. Bruni; Ranjan Duara; Robert P. Friedland; Rivka Inzelberg; Wolfgang Hampe; Hideaki Bujo; You-Qiang Song; Olav M. Andersen

The recycling of the amyloid precursor protein (APP) from the cell surface via the endocytic pathways plays a key role in the generation of amyloid β peptide (Aβ) in Alzheimer disease. We report here that inherited variants in the SORL1 neuronal sorting receptor are associated with late-onset Alzheimer disease. These variants, which occur in at least two different clusters of intronic sequences within the SORL1 gene (also known as LR11 or SORLA) may regulate tissue-specific expression of SORL1. We also show that SORL1 directs trafficking of APP into recycling pathways and that when SORL1 is underexpressed, APP is sorted into Aβ-generating compartments. These data suggest that inherited or acquired changes in SORL1 expression or function are mechanistically involved in causing Alzheimer disease.


Journal of Biological Chemistry | 2000

α-Synuclein Membrane Interactions and Lipid Specificity

Euijung Jo; JoAnne McLaurin; Christopher M. Yip; Peter St George-Hyslop; Paul E. Fraser

With the discovery of missense mutations (A53T and A30P) in α-synuclein (α-Syn) in several families with early onset familial Parkinsons disease, α-Syn aggregation and fibril formation have been thought to play a role in the pathogenesis of α-synucleinopathies, such as Parkinsons disease, dementia with Lewy bodies, and multiple system atrophy. As previous reports have suggested that α-Syn plays a role in lipid transport and synaptic membrane biogenesis, we investigated whether α-Syn binds to a specific lipid ligand using thin layer chromatography overlay and examined the changes in its secondary structure using circular dichroism spectroscopy. α-Syn was found to bind to acidic phospholipid vesicles and this binding was significantly augmented by the presence of phosphatidylethanolamine, a neutral phospholipid. We further examined the interaction of α-Syn with lipids by in situ atomic force microscopy. The association of soluble wild-type α-Syn with planar lipid bilayers resulted in extensive bilayer disruption and the formation of amorphous aggregates and small fibrils. The A53T mutant α-Syn disrupted the lipid bilayers in a similar fashion but at a slower rate. These results suggest that α-Syn membrane interactions are physiologically important and the lipid composition of the cellular membranes may affect these interactions in vivo.


Journal of Biological Chemistry | 2005

Wild-type PINK1 Prevents Basal and Induced Neuronal Apoptosis, a Protective Effect Abrogated by Parkinson Disease-related Mutations

Agnès Petit; T. Kawarai; Erwan Paitel; Nobuo Sanjo; Mary C. Maj; Michael P. Scheid; Fusheng Chen; Yongjun Gu; Hiroshi Hasegawa; Shabnam Salehi-Rad; Linda Wang; Ekaterina Rogaeva; Paul E. Fraser; Brian Robinson; Peter St George-Hyslop; Anurag Tandon

Mutations in the PTEN-induced kinase 1 (PINK1) gene have recently been implicated in autosomal recessive early onset Parkinson Disease (1, 2). To investigate the role of PINK1 in neurodegeneration, we designed human and murine neuronal cell lines expressing either wild-type PINK1 or PINK1 bearing a mutation associated with Parkinson Disease. We show that under basal and staurosporine-induced conditions, the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive cells was lower in wild-type PINK1 expressing SH-SY5Y cells than in mock-transfected cells. This phenotype was due to a PINK1-mediated reduction in cytochrome c release from mitochondria, which prevents subsequent caspase-3 activation. We show that overexpression of wild-type PINK1 strongly reduced both basal and staurosporine-induced caspase 3 activity. Overexpression of wild-type PINK1 also reduced the levels of cleaved caspase-9, caspase-3, caspase-7, and activated poly(ADP-ribose) polymerase under both basal and staurosporine-induced conditions. In contrast, Parkinson disease-related mutations and a kinase-inactive mutation in PINK1 abrogated the protective effect of PINK1. Together, these results suggest that PINK1 reduces the basal neuronal pro-apoptotic activity and protects neurons from staurosporine-induced apoptosis. Loss of this protective function may therefore underlie the degeneration of nigral dopaminergic neurons in patients with PINK1 mutations.


Nature Medicine | 2006

Cyclohexanehexol inhibitors of Aβ aggregation prevent and reverse Alzheimer phenotype in a mouse model

JoAnne McLaurin; Meredith E. Kierstead; Mary E. Brown; Cheryl A. Hawkes; Mark H. L. Lambermon; Amie L. Phinney; Audrey A. Darabie; Julian E. Cousins; Janet French; Melissa F Lan; Fusheng Chen; Sydney S N Wong; Howard T.J. Mount; Paul E. Fraser; David Westaway; Peter St George-Hyslop

When given orally to a transgenic mouse model of Alzheimer disease, cyclohexanehexol stereoisomers inhibit aggregation of amyloid β peptide (Aβ) into high-molecular-weight oligomers in the brain and ameliorate several Alzheimer disease–like phenotypes in these mice, including impaired cognition, altered synaptic physiology, cerebral Aβ pathology and accelerated mortality. These therapeutic effects, which occur regardless of whether the compounds are given before or well after the onset of the Alzheimer disease–like phenotype, support the idea that the accumulation of Aβ oligomers has a central role in the pathogenesis of Alzheimer disease.


Neuron | 1994

An important role of heparan sulfate proteoglycan (perlecan) in a model system for the deposition and persistence of fibrillar aβ-amyloid in rat brain

Alan D. Snow; Raymond Sekiguchi; David Nochlin; Paul E. Fraser; Koji Kimata; Akihiro Mizutani; Mikio Arai; Wayne Schreier; David Morgan

A consistent rat model for the study of the consequences of congophilic and fibrillar A beta-amyloid in brain has been developed. One hundred percent of animals receiving infusions of synthetic beta-amyloid protein (A beta 1-40) plus a specific heparan sulfate proteoglycan (HSPG) for 1 week or 7 weeks (following 2 week infusions) demonstrated Congo red and thioflavin S-positive deposits adjacent to the infusion site. Extracellular amyloid fibrils were identified by electron microscopy and were immunogold decorated with A beta antibody. Significant increases in Congo red staining were observed in animals infused with A beta plus HSPG versus those infused with only A beta. Infusion of A beta alone was variable with respect to congophilic amyloid persistence, which occurred in 50% of animals and only when endogenous HSPGs accumulated at A beta deposition sites. By 7 weeks, only animals infused with A beta plus HSPG demonstrated compaction of the Congo red material from amorphous, wispy deposits (at 1 week) to stellate deposits resembling a Maltese cross. These spherical amyloid deposits were very similar to Congo red-stained amyloid plaques in human Alzheimers disease brain, and in vitro data suggest that they were probably formed in vivo following interactions with endogenous brain components.


Nature | 2006

TMP21 is a presenilin complex component that modulates gamma-secretase but not epsilon-secretase activity.

Fusheng Chen; Hiroshi Hasegawa; Gerold Schmitt-Ulms; T. Kawarai; Christopher Bohm; Taiichi Katayama; Yongjun Gu; Nobuo Sanjo; Michael Glista; Ekaterina Rogaeva; Yosuke Wakutani; Raphaelle Pardossi-Piquard; Xueying Ruan; Anurag Tandon; Frédéric Checler; Philippe Marambaud; Kirk C. Hansen; David Westaway; Peter St George-Hyslop; Paul E. Fraser

The presenilin proteins (PS1 and PS2) and their interacting partners nicastrin, aph-1 (refs 4, 5) and pen-2 (ref. 5) form a series of high-molecular-mass, membrane-bound protein complexes that are necessary for γ-secretase and ɛ-secretase cleavage of selected type 1 transmembrane proteins, including the amyloid precursor protein, Notch and cadherins. Modest cleavage activity can be generated by reconstituting these four proteins in yeast and Spodoptera frugiperda (sf9) cells. However, a critical but unanswered question about the biology of the presenilin complexes is how their activity is modulated in terms of substrate specificity and/or relative activities at the γ and ɛ sites. A corollary to this question is whether additional proteins in the presenilin complexes might subsume these putative regulatory functions. The hypothesis that additional proteins might exist in the presenilin complexes is supported by the fact that enzymatically active complexes have a mass that is much greater than predicted for a 1:1:1:1 stoichiometric complex (at least 650 kDa observed, compared with about 220 kDa predicted). To address these questions we undertook a search for presenilin-interacting proteins that differentially affected γ- and ɛ-site cleavage events. Here we report that TMP21, a member of the p24 cargo protein family, is a component of presenilin complexes and differentially regulates γ-secretase cleavage without affecting ɛ-secretase activity.


Journal of Biological Chemistry | 1997

Phosphorylation, Subcellular Localization, and Membrane Orientation of the Alzheimer's Disease-associated Presenilins

Bart De Strooper; Monique Beullens; Bart Contreras; Lyne Levesque; Katleen Craessaerts; Barbara Cordell; Dieder Moechars; Mathieu Bollen; Paul E. Fraser; Peter St George-Hyslop; Fred Van Leuven

Presenilins 1 and 2 are unglycosylated proteins with apparent molecular mass of 45 and 50 kDa, respectively, in transfected COS-1 and Chinese hamster ovary cells. They colocalize with proteins from the endoplasmic reticulum and the Golgi apparatus in transfected and untransfected cells. In COS-1 cells low amounts of intact endogeneous presenilin 1 migrating at 45 kDa are detected together with relative larger amounts of presenilin 1 fragments migrating between 18 and 30 kDa. The presenilins have a strong tendency to form aggregates (mass of 100-250 kDa) in SDS-polyacrylamide gel electrophoresis, which can be partially resolved when denatured by SDS at 37°C instead of 95°C. Sulfation, glycosaminoglycan modification, or acylation of the presenilins was not observed, but both proteins are posttranslationally phosphorylated on serine residues. The mutations Ala-246 → Glu or Cys-410 → Tyr that cause Alzheimers disease do not interfere with the biosynthesis or phosphorylation of presenilin 1. Finally, using low concentrations of digitonin to selectively permeabilize the cell membrane but not the endoplasmic reticulum membrane, it is demonstrated that the two major hydrophilic domains of presenilin 1 are oriented to the cytoplasm. The current investigation documents the posttranslational modifications and subcellular localization of the presenilins and indicates that postulated interactions with amyloid precursor protein metabolism should occur in the early compartments of the biosynthetic pathway.


Journal of Biological Chemistry | 2006

Small Ubiquitin-like Modifier (SUMO) Modification of Natively Unfolded Proteins Tau and α-Synuclein

Véronique Dorval; Paul E. Fraser

Sumoylation is an important post-translational modification that provides a rapid and reversible means for controlling the activity, subcellular localization, and stability of target proteins. We have examined the covalent attachment of the small ubiquitin-like modifier (SUMO) proteins to tau and α-synuclein, two natively unfolded proteins that define several neurodegenerative diseases. Both brain proteins were preferentially modified by SUMO1, as compared with SUMO2 or SUMO3. Tau contains two SUMO consensus sequences, and mutational analyses identified Lys340 as the major sumoylation site. Although both tau and α-synuclein are targets for proteasomal degradation, only tau sumoylation was affected by inhibitors of the proteasome pathway. Tau is a microtubule-associated protein, whose ability to bind and stabilize microtubules is negatively regulated by phosphorylation. Treatment with the phosphatase inhibitor, okadaic acid, or the microtubule depolymerizing drug, colchicine, up-regulated tau sumoylation. This suggests that SUMO modification may preferentially target a free soluble pool of the substrate. These findings revealed a new, possibly regulatory, modification of tau and α-synuclein that may also have implications for their pathogenic roles in neurodegenerative diseases.

Collaboration


Dive into the Paul E. Fraser's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Yu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge