Paul F. Cannon
CABI
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul F. Cannon.
Studies in Mycology | 2012
Paul F. Cannon; Ulrike Damm; Peter R. Johnston; Bevan S. Weir
A review is provided of the current state of understanding of Colletotrichum systematics, focusing on species-level data and the major clades. The taxonomic placement of the genus is discussed, and the evolution of our approach to species concepts and anamorph-teleomorph relationships is described. The application of multilocus technologies to phylogenetic analysis of Colletotrichum is reviewed, and selection of potential genes/loci for barcoding purposes is discussed. Host specificity and its relation to speciation and taxonomy is briefly addressed. A short review is presented of the current status of classification of the species clusters that are currently without comprehensive multilocus analyses, emphasising the orbiculare and destructivum aggregates. The future for Colletotrichum biology will be reliant on consensus classification and robust identification tools. In support of these goals, a Subcommission on Colletotrichum has been formed under the auspices of the International Commission on Taxonomy of Fungi, which will administer a carefully curated barcode database for sequence-based identification of species within the BioloMICS web environment.
Studies in Mycology | 2012
Ulrike Damm; Paul F. Cannon; J.H.C. Woudenberg; Pedro W. Crous
Colletotrichum acutatum is known as an important anthracnose pathogen of a wide range of host plants worldwide. Numerous studies have reported subgroups within the C. acutatum species complex. Multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3) of 331 strains previously identified as C. acutatum and other related taxa, including strains from numerous hosts with wide geographic distributions, confirmed the molecular groups previously recognised and identified a series of novel taxa. Thirty-one species are accepted, of which 21 have not previously been recognised. Colletotrichum orchidophilum clusters basal to the C. acutatum species complex. There is a high phenotypic diversity within this complex, and some of the species appear to have preferences to specific hosts or geographical regions. Others appear to be plurivorous and are present in multiple regions. In this study, only C. salicis and C. rhombiforme formed sexual morphs in culture, although sexual morphs have been described from other taxa (especially as laboratory crosses), and there is evidence of hybridisation between different species. One species with similar morphology to C. acutatum but not belonging to this species complex was also described here as new, namely C. pseudoacutatum. Taxonomic novelties: New combinations - Colletotrichum limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. lupini (Bondar) Damm, P.F. Cannon & Crous, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. New species - C. acerbum Damm, P.F. Cannon & Crous, C. australe Damm, P.F. Cannon & Crous, C. brisbanense Damm, P.F. Cannon & Crous, C. cosmi Damm, P.F. Cannon & Crous, C. costaricense Damm, P.F. Cannon & Crous, C. cuscutae Damm, P.F. Cannon & Crous, C. guajavae Damm, P.F. Cannon & Crous, C. indonesiense Damm, P.F. Cannon & Crous, C. johnstonii Damm, P.F. Cannon & Crous, C. kinghornii Damm, P.F. Cannon & Crous, C. laticiphilum Damm, P.F. Cannon & Crous, C. melonis Damm, P.F. Cannon & Crous, C. orchidophilum Damm, P.F. Cannon & Crous, C. paxtonii Damm, P.F. Cannon & Crous, C. pseudoacutatum Damm, P.F. Cannon & Crous C. pyricola Damm, P.F. Cannon & Crous, C. rhombiforme Damm, P.F. Cannon & Crous, C. scovillei Damm, P.F. Cannon & Crous, C. sloanei Damm, P.F. Cannon & Crous, C. tamarilloi Damm, P.F. Cannon & Crous, C. walleri Damm, P.F. Cannon & Crous. Typifications: Epitypifications - C. acutatum J.H. Simmonds, C. limetticola (R.E. Clausen) Damm, P.F. Cannon & Crous, C. nymphaeae (Pass.) Aa, C. phormii (Henn.) D.F. Farr & Rossman, C. salicis (Fuckel) Damm, P.F. Cannon & Crous. Lectotypifications - C. nymphaeae (Pass.) Aa, C. orchidearum Allesch.
Mycologia | 2002
Paul F. Cannon; Coralie M. Simmons
Endophytic fungi were isolated from living symptomless leaves of 12 tree species from two locations in the Iwokrama Forest Reserve, Guyana. Sixty-four fungal morphotaxa were characterized from 2492 cultures, which were derived from a total of 2520 sample units. Species of Colletotrichum, Nodulisporium, Pestalotiopsis and Phomopsis were most frequently isolated. Colonization was greater in samples from the midrib than in those from laminar tissue, and slightly greater at the tip of the lamina compared with the base of the leaf. In contrast to studies in temperate ecosystems, no distinct fungal communities were identified for individual plant species, suggesting that the degree of host preference is low. The implications for estimation of fungal diversity in tropical systems are explored.
Mycologia | 2010
Enith I. Rojas; Stephen A. Rehner; Gary J. Samuels; Sunshine A. Van Bael; Edward Allen Herre; Paul F. Cannon; Rui Chen; Junfeng Pang; Rui-Wu Wang; Ya-Ping Zhang; Yan-Qiong Peng; Tao Sha
Colletotrichum interacts with numerous plant species overtly as symptomatic pathogens and cryptically as asymptomatic endophytes. It is not known whether these contrasting ecological modes are optional strategies expressed by individual Colletotrichum species or whether a species’ ecology is explicitly pathogenic or endophytic. We explored this question by inferring relationships among 77 C. gloeosporioides s.l. strains isolated from asymptomatic leaves and from anthracnose lesions on leaves and fruits of Theobroma cacao (cacao) and other plants from Panamá. ITS and 5′-tef1 were used to assess diversity and to delineate operational taxonomic units for multilocus phylogenetic analysis. The ITS and 5′-tef1 screens concordantly resolved four strongly supported lineages, clades A–D: Clade A includes the ex type of C. gloeosporioides, clade B includes the ex type ITS sequence of C. boninense, and clades C and D are unidentified. The ITS yielded limited resolution and support within all clades, in particular the C. gloeosporioides clade (A), the focal lineage dealt with in this study. In contrast the 5′-tef1 screen differentiated nine distinctive haplotype subgroups within the C. gloeosporioides clade that were concordant with phylogenetic terminals resolved in a five-locus nuclear phylogeny. Among these were two phylogenetic species associated with symptomatic infections specific to either cacao or mango and five phylogenetic species isolated principally as asymptomatic infections from cacao and other plant hosts. We formally describe two new species, C. tropicale and C. ignotum, that are frequent asymptomatic associates of cacao and other Neotropical plant species, and epitypify C. theobromicola, which is associated with foliar and fruit anthracnose lesions of cacao. Asymptomatic Colletotrichum strains isolated from cacao plants grown in China included six distinct C. gloeosporioides clade taxa, only one of which is known to occur in the Neotropics.
Studies in Mycology | 2012
Ulrike Damm; Paul F. Cannon; J.H.C. Woudenberg; Peter R. Johnston; Bevan S. Weir; Yu Pei Tan; Roger G. Shivas; Pedro W. Crous
Although only recently described, Colletotrichum boninense is well established in literature as an anthracnose pathogen or endophyte of a diverse range of host plants worldwide. It is especially prominent on members of Amaryllidaceae, Orchidaceae, Proteaceae and Solanaceae. Reports from literature and preliminary studies using ITS sequence data indicated that C. boninense represents a species complex. A multilocus molecular phylogenetic analysis (ITS, ACT, TUB2, CHS-1, GAPDH, HIS3, CAL) of 86 strains previously identified as C. boninense and other related strains revealed 18 clades. These clades are recognised here as separate species, including C. boninense s. str., C. hippeastri, C. karstii and 12 previously undescribed species, C. annellatum, C. beeveri, C. brassicicola, C. brasiliense, C. colombiense, C. constrictum, C. cymbidiicola, C. dacrycarpi, C. novae-zelandiae, C. oncidii, C. parsonsiae and C. torulosum. Seven of the new species are only known from New Zealand, perhaps reflecting a sampling bias. The new combination C. phyllanthi was made, and C. dracaenae Petch was epitypified and the name replaced with C. petchii. Typical for species of the C. boninense species complex are the conidiogenous cells with rather prominent periclinal thickening that also sometimes extend to form a new conidiogenous locus or annellations as well as conidia that have a prominent basal scar. Many species in the C. boninense complex form teleomorphs in culture. Taxonomic novelties: New combination - Colletotrichum phyllanthi (H. Surendranath Pai) Damm, P.F. Cannon & Crous. Name replacement - C. petchii Damm, P.F. Cannon & Crous. New species - C. annellatum Damm, P.F. Cannon & Crous, C. beeveri Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. brassicicola Damm, P.F. Cannon & Crous, C. brasiliense Damm, P.F. Cannon, Crous & Massola, C. colombiense Damm, P.F. Cannon, Crous, C. constrictum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. cymbidiicola Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. dacrycarpi Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. novae-zelandiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. oncidii Damm, P.F. Cannon & Crous, C. parsonsiae Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir, C. torulosum Damm, P.F. Cannon, Crous, P.R. Johnst. & B. Weir. Typifications: Epitypifications - C. dracaenae Petch.
Fungal Biology | 2004
Guozhong Lu; Paul F. Cannon; Alex Reid; Coralie M. Simmons
The diversity and host specificity were studied of a collection of Colletotrichum strains derived from endophytic colonies in leaves of 12 tree species in the Iwokrama Forest Reserve, Guyana. Analysis included ISSR-PCR and RAPD molecular fingerprinting techniques, rDNA ITS sequencing and morphological and cultural characterization. Most strains belonged to one of two species, C. gloeosporioides and a further taxon which is probably referable to C. boninense. Almost no strains were found to be genetically identical, indicating that clonal reproduction does not play a prominent role. No degree of host specificity could be detected even at molecular fingerprint level. The implications for estimation of fungal diversity in closed tropical forests may be profound.
Fungal Biology | 1999
A.G. Buddie; P. Martínez-Culebras; Paul D. Bridge; M.D. García; A. Querol; Paul F. Cannon; Enrique Monte
Strains of Colletotrichum species derived from diseased strawberry plants from a wide geographical range were studied using mitochondrial and ribosomal DNA RFLPs, and acetyl and propionyl esterase isoenzymes. Two major species aggregates were detected, centred on C. acutatum and C. gloeosporioides respectively, with significant further subdivision. There were apparent discrepancies in the hierarchical nesting of some taxon groups based on the different molecular techniques. Strains assigned to C. acutatum fell into several rDNA RFLP groups, but there was less variation in mtDNA RFLP band patterns. There appears to be at least one probably clonal population in the U.S.A. which is also present in Europe, and a less well-defined series of groups which are at least sometimes sexually reproducing. Strains assigned to C. fragariae were found not to have distinct rDNA band patterns from the teleomorph linked strains studied, which had been referred to as C. gloeosporioides. They did vary in this respect from C. gloeosporioides associated with Citrus, its type host. It was, therefore, concluded that all the strains studied with cylindrical conidia should be placed within C. fragariae, which is confirmed as separate from C. gloeosporioides and recognized as a holomorphic taxon. Nevertheless, a separate asexually reproducing infraspecific group was distinguishable using mtDNA information. An epitype is designated for C. fragariae.
IMA fungus | 2013
Amy Y. Rossman; Keith A. Seifert; Gary J. Samuels; Andrew M. Minnis; Hans-Josef Schroers; Lorenzo Lombard; Pedro W. Crous; Kadri Põldmaa; Paul F. Cannon; Richard C. Summerbell; David M. Geiser; Wen-Ying Zhuang; Yuuri Hirooka; Cesar S. Herrera; Catalina Salgado-Salazar; Priscila Chaverri
With the recent changes concerning pleomorphic fungi in the new International Code of Nomenclature for algae, fungi, and plants (ICN), it is necessary to propose the acceptance or protection of sexual morph-typified or asexual morph-typified generic names that do not have priority, or to propose the rejection or suppression1 of competing names. In addition, sexual morph-typified generic names, where widely used, must be proposed for rejection or suppression in favour of asexual morph-typified names that have priority, or the latter must be proposed for conservation or protection. Some pragmatic criteria used for deciding the acceptance or rejection of generic names include: the number of name changes required when one generic name is used over another, the clarity of the generic concept, their relative frequencies of use in the scientific literature, and a vote of interested mycologists. Here, twelve widely used generic names in three families of Hypocreales are proposed for acceptance, either by conservation or protection, despite their lack of priority of publication, or because they are widely used asexual morph-typified names. Each pair of generic names is evaluated, with a recommendation as to the generic name to be used, and safeguarded, either through conservation or protection. Four generic names typified by a species with a sexual morph as type that are younger than competing generic names typified by a species with an asexual morph type, are proposed for use. Eight older generic names typified by species with an asexual morph as type are proposed for use over younger competing generic names typified by a species with a sexual morph as type. Within Bionectriaceae, Clonostachys is recommended over Bionectria; in Hypocreaceae, Hypomyces is recommended over Cladobotryum, Sphaerostilbella over Gliocladium, and Trichoderma over Hypocrea; and in Nectriaceae, Actinostilbe is recommended over Lanatonectria, Cylindrocladiella over Nectricladiella, Fusarium over Gibberella, Gliocephalotrichum over Leuconectria, Gliocladiopsis over Glionectria, Nalanthamala over Rubrinectria, Nectria over Tubercularia, and Neonectria over Cylindrocarpon.
Fungal Diversity | 2013
Ulrike Damm; Paul F. Cannon; Fang Liu; Robert W. Barreto; Eduardo Guatimosim; Pedro W. Crous
Colletotrichum orbiculare causes anthracnose of Cucurbitaceae and is phylogenetically closely related to pathogens of several other herbaceous hosts belonging to the Asteraceae, Fabaceae and Malvaceae. Most of them are known for their hemibiotrophic infection strategy and as destructive pathogens either of field crops or weeds. In order to study the phylogenetic relationships of these fungi, a multilocus analysis (ITS, GAPDH, CHS-1, HIS3, ACT, TUB2, GS) of 42 strains of C. orbiculare and related species was conducted. The analysis resulted in nine clades that confirmed the four species previously known as belonging to this species complex, C. lindemuthianum, C. malvarum, C. orbiculare and C. trifolii, and recognised four new species from weeds, namely C. bidentis, C. sidae, C. spinosum and C. tebeestii. The name C. orbiculare itself is widely used in plant pathology and science, but is invalid according to current nomenclatural rules. Therefore we described a new species with the same epithet and a type specimen that agrees with our current understanding of this species, and is linked to a living culture. Following the recent epitypification of C. lindemuthianum, we chose appropriate specimens with associated strains to serve as epitypes of C. malvarum and C. trifolii, and selected an authentic specimen of C. trifolii as lectotype.
Fungal Biology | 2001
Rafic Dulymamode; Paul F. Cannon; Abed Peerally
The saprobic microfungi associated with endemic plants of Mauritius have been studied. Over 200 taxa were identified of which approximately 90% are new records for Mauritius including one genus and 38 new species. The mycobiota encountered on the monocotyledonous genus Pandanus is more distinct than that on three dicotyledonous hosts Sideroxylon, Cordemoya and Olea. Arguments are presented to support the inclusion of microfungi in in situ conservation management policies.