Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Franck Adjou Moumouni is active.

Publication


Featured researches published by Paul Franck Adjou Moumouni.


Veterinary Parasitology | 2013

Molecular and serological prevalence of Babesia bigemina and Babesia bovis in cattle and water buffalos under small-scale dairy farming in Beheira and Faiyum Provinces, Egypt

Hany M. Ibrahim; Paul Franck Adjou Moumouni; Khaled Mohammed-Geba; Sherin K. Sheir; Ihab S.Y. Hashem; Shinuo Cao; Mohamad Alaa Terkawi; Ketsarin Kamyingkird; Yoshifumi Nishikawa; Hiroshi Suzuki; Xuenan Xuan

In order to determine the molecular and serological prevalence of Babesia bigemina and Babesia bovis, a total of 247 blood samples were collected from cattle and water buffalos in Beheira and Faiyum Provinces in Egypt and examined by nested polymerase chain reaction (nPCR) and enzyme-linked immunosorbent assay (ELISA). In cattle, the prevalence of B. bigemina and B. bovis was 5.30% and 3.97% by nPCR and 10.60% and 9.27% by ELISA, respectively, whereas those of water buffalos were 10.42% and 4.17% by nPCR and 15.63% and 11.46% by ELISA, respectively. Statistically significant differences in the prevalence of the two infections were observed on the basis of age and health status. Sequencing analysis revealed two genotypes for B. bovis spherical body protein-4. In conclusion, the current data provide valuable information regarding the epidemiology of B. bigemina and B. bovis infections in cattle and water buffalos from Egypt, which can be employed in developing future strategies for disease management and control.


Infection and Immunity | 2015

Macrophages are the determinant of resistance to and outcome of nonlethal Babesia microti infection in mice.

Mohamad Alaa Terkawi; Shinuo Cao; Maria Shirley Herbas; Maki Nishimura; Yan Li; Paul Franck Adjou Moumouni; Asadullah Hamid Pyarokhil; Daisuke Kondoh; Nobuo Kitamura; Yoshifumi Nishikawa; Kentaro Kato; Naoaki Yokoyama; Jinlin Zhou; Hiroshi Suzuki; Ikuo Igarashi; Xuenan Xuan

ABSTRACT In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different times during the course of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naive mice resulted in a slight reduction in parasitemia with improved survival compared to that of mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophages at different times exaggerated the pathogenesis of the infection in deficient IFN-γ−/− and severe combined immunodeficiency (SCID) mice. Collectively, our data provide important clues about the role of macrophages in the resistance and control of B. microti and imply that the severity of the infection in immunocompromised patients might be due to impairment of macrophage function.


Ticks and Tick-borne Diseases | 2017

Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey

Mo Zhou; Shinuo Cao; Ferda Sevinc; Mutlu Sevinc; Onur Ceylan; Sepil Ekici; Charoonluk Jirapattharasate; Paul Franck Adjou Moumouni; Mingming Liu; Guanbo Wang; Aiko Iguchi; Patrick Vudriko; Hiroshi Suzuki; Xuenan Xuan

Babesia spp., Theileria spp. and Anaplasma spp. are significant tick-borne pathogens of livestock globally. In this study, we investigated the presence and distribution of Babesia ovis, Theileria ovis and Anaplasma ovis in 343 small ruminants (249 sheep and 94 goats) from 13 towns in the Central Anatolia region of Turkey using species-specific PCR assays. The PCR were conducted using the primers based on the B. ovis ssu rRNA (BoSSUrRNA), T. ovis ssu rRNA (ToSSUrRNA) and A. ovis major surface protein 4 (AoMSP4) genes, respectively. Fragments of these genes were sequenced for phylogenetic analysis. PCR results revealed that the overall infections of A. ovis, T. ovis and B. ovis were 60.0%, 35.9% and 5.2%, respectively. Co-infection of the animals with two or three pathogens was detected in 105/343 (30.6%) of the ovine samples. The results of sequence analysis indicated that AoMSP4 were conserved among the Turkish samples, with 100% sequence identity values. In contrast, the BoSSUrRNA and ToSSUrRNA gene sequences were relatively diverse with identity values of 98.54%-99.82% and 99.23%-99.81%, respectively. Phylograms were inferred based on the BoSSUrRNA, ToSSUrRNA and AoMSP4 sequences obtained in this study and those from previous studies. B. ovis isolates from Turkey were found in the same clade as the isolates from other countries in phylogenetic analysis. On the other hand, the Turkish T. ovis isolates in the present study formed a monophyletic grouping with the isolates from other countries in a phylogeny based on ToSSUrRNA sequences. Furthermore, phylogenetic analysis using AoMSP4 sequences showed the presence of three genotypes of A. ovis. This study provides important data for understanding the epidemiology of tick-borne diseases in small ruminants and the degree of genetic heterogeneities among these pathogens in Turkey. To our knowledge, this is the first study on the co-infection of Babesia, Theileria and Anaplasma in sheep and goats in Turkey.


Ticks and Tick-borne Diseases | 2016

Molecular detection and genetic identification of Babesia bigemina, Theileria annulata, Theileria orientalis and Anaplasma marginale in Turkey.

Mo Zhou; Shinuo Cao; Ferda Sevinc; Mutlu Sevinc; Onur Ceylan; Paul Franck Adjou Moumouni; Charoonluk Jirapattharasate; Mingming Liu; Guanbo Wang; Aiko Iguchi; Patrick Vudriko; Hiroshi Suzuki; Xuenan Xuan

Babesia spp., Theileria spp. and Anaplasma spp. are significant tick-borne pathogens of livestock globally. In this study, we investigated the presence and distribution of Babesia bigemina, Theileria annulata, Theileria orientalis and Anaplasma marginale in cattle from 6 provinces of Turkey using species-specific PCR assays. The PCR were conducted using the primers based on the B. bigemina rhoptry-associated protein 1a (BbiRAP-1a), T. annulata merozoite surface antigen-1 (Tams-1), T. orientalis major piroplasm surface protein (ToMPSP) and A. marginale major surface protein 4 (AmMSP4) genes, respectively. Fragments of B. bigemina internal transcribed spacer (BbiITS), T. annulata internal transcribed spacer (TaITS), ToMPSP and AmMSP4 genes were sequenced for phylogenetic analysis. PCR results revealed that the overall infections of A. marginale, T. annulata, B. bigemina and T. orientalis were 29.1%, 18.9%, 11.2% and 5.6%, respectively. The co-infection of two or three pathogens was detected in 29/196 (15.1%) of the cattle samples. The results of sequence analysis indicated that BbiRAP-1a, BbiITS, Tams-1, ToMPSP and AmMSP4 were conserved among the Turkish samples, with 99.76%, 99-99.8%, 99.34-99.78%, 96.9-99.61% and 99.42-99.71% sequence identity values, respectively. In contrast, the Turkish TaITS gene sequences were relatively diverse with 92.3-96.63% identity values. B. bigemina isolates from Turkey were found in the same clade as the isolates from other countries in phylogenetic analysis. On the other hand, phylogenetic analysis based on T. annulata ITS sequences revealed significant differences in the genotypes of T. annulata isolates from Turkey. Additionally, the T. orientalis isolates from Turkish samples were classified as MPSP type 3 genotype. This is the first report of type 3 MPSP in Turkey. Moreover, AmMSP4 isolates from Turkey were found in the same clade as the isolates from other countries. This study provides important data for understanding the epidemiology of tick-borne diseases and it is expected to improve approach for diagnosis and control of tick-borne diseases in Turkey.


Parasitology International | 2016

Molecular epidemiology of bovine Babesia spp. and Theileria orientalis parasites in beef cattle from northern and northeastern Thailand.

Charoonluk Jirapattharasate; Paul Franck Adjou Moumouni; Shinuo Cao; Aiko Iguchi; Mingming Liu; Guanbo Wang; Mo Zhou; Patrick Vudriko; Tanasak Changbunjong; Sivapong Sungpradit; Parntep Ratanakorn; Walasinee Moonarmart; Poonyapat Sedwisai; Thekhawet Weluwanarak; Witsanu Wongsawang; Hiroshi Suzuki; Xuenan Xuan

Beef cattle production represents the largest cattle population in Thailand. Their productivity is constrained by tick-borne diseases such as babesiosis and theileriosis. In this study, we determined the prevalence of Babesia bigemina, Babesia bovis and Theileria orientalis using polymerase chain reaction (PCR). The genetic markers that were used for detection of the above parasites were sequenced to determine identities and similarity for Babesia spp. and genetic diversity of T. orientalis. Furthermore the risk factors for the occurrence of the above protozoan parasites in beef cattle from northern and northeastern parts of Thailand were assessed. A total of 329 blood samples were collected from beef cattle in 6 provinces. The study revealed that T. orientalis was the most prevalent (30.1%) parasite in beef cattle followed by B. bigemina (13.1%) and B. bovis (5.5%). Overall, 78.7% of the cattle screened were infected with at least one of the above parasites. Co-infection with Babesia spp. and T. orientalis was 30.1%. B. bigemina and T. orientalis were the most prevalent (15.1%) co-infection although triple infection with the three parasites was observed in 3.0% of the samples. Sequencing analysis revealed that B. bigemina RAP1 gene and B. bovis SBP2 gene were conserved among the parasites from different cattle samples. Phylogenetic analysis showed that the T. orientalis MPSP gene from parasites isolated from cattle in north and northeast Thailand was classified into types 5 and 7 as reported previously. Lack of tick control program was the universal risk factor of the occurrence of Babesia spp. and T. orientalis infection in beef cattle in northern and northeastern Thailand. We therefore recommend training of farmers on appropriate tick control strategies and further research on potential vectors for T. orientalis and elucidate the effect of co-infection with Babesia spp. on the pathogenicity of T. orientalis infection on beef in northern and northeastern Thailand.


Experimental Parasitology | 2013

Molecular characterization and antigenic properties of a novel Babesia gibsoni glutamic acid-rich protein (BgGARP).

Ahmed Mousa; Shinuo Cao; Gabriel Oluga Aboge; Mohamad Alaa Terkawi; Ahmed El Kirdasy; Akram Salama; Mabrouk Attia; Mahmoud AbouLaila; Mo Zhou; Ketsarin Kamyingkird; Paul Franck Adjou Moumouni; Tatsunori Masatani; Sami Ahmed Abd El Aziz; Waheed Mohammed Moussa; Bayin Chahan; Shinya Fukumoto; Yoshifumi Nishikawa; Salah Sayed El Ballal; Xuenan Xuan

Identification and molecular characterization of Babesia gibsoni proteins with potential antigenic properties are crucial for the development and validation of the serodiagnostic method. In this study, we isolated a cDNA clone encoding a novel B. gibsoni 76-kDa protein by immunoscreening of the parasite cDNA library. Computer analysis revealed that the protein presents a glutamic acid-rich region in the C-terminal. Therefore, the protein was designated as B. gibsoni glutamic acid-rich protein (BgGARP). A BLASTp analysis of a translated BgGARP polypeptide demonstrated that the peptide shared a significant homology with a 200-kDa protein of Babesia bigemina and Babesia bovis. A truncated BgGARP cDNA (BgGARPt) encoding a predicted 13-kDa peptide was expressed in Escherichia coli (E. coli), and mouse antisera against the recombinant protein were used to characterize a corresponding native protein. The antiserum against recombinant BgGARPt (rBgGARPt) recognized a 140-kDa protein in the lysate of infected erythrocytes, which was detectable in the cytoplasm of the parasites by confocal microscopic observation. In addition, the specificity and sensitivity of enzyme-linked immunosorbent assay (ELISA) with rBgGARPt were evaluated using B. gibsoni-infected dog sera and specific pathogen-free (SPF) dog sera. Moreover, 107 serum samples from dogs clinically diagnosed with babesiosis were examined using ELISA with rBgGARPt. The results showed that 86 (80.4%) samples were positive by rBgGARPt-ELISA, which was comparable to IFAT and PCR as reference test. Taken together, these results demonstrate that BgGARP is a suitable serodiagnostic antigen for detecting antibodies against B. gibsoni in dogs.


Parasitology International | 2018

Molecular analysis of tick-borne protozoan and rickettsial pathogens in small ruminants from two South African provinces

Aaron Edmond Ringo; Paul Franck Adjou Moumouni; Moeti Taioe; Charoonluk Jirapattharasate; Mingming Liu; Guanbo Wang; Yang Gao; Huanping Guo; Seung-Hun Lee; Weiqing Zheng; Artemis Efstratiou; Jixu Li; Noboru Inoue; Hiroshi Suzuki; Oriel Thekisoe; Xuenan Xuan

Tick-borne protozoan and rickettsial diseases are a major threat to livestock in tropical and sub-tropical regions of Africa. In this study we investigated the presence and distribution of Theileria spp., Babesia ovis, Anaplasma ovis, Anaplasma phagocytophilum, Ehrlichia ruminantium and SFG Rickettsia in sheep and goats from Free State and KwaZulu-Natal provinces. A total of 91 blood samples were screened in this study, 61 from goats and 30 from sheep. PCR assay was conducted using primers based on Theileria spp. 18S rRNA, Babesia ovis (BoSSU rRNA), Anaplasma ovis (AoMSP4), Anaplasma phagocytophilum epank1, Ehrlichia ruminantium pCS20 and SFG Rickettsia OmpA. Overall infection rates of Theileria spp., Anaplasma ovis and Ehrlichia ruminantium were 18 (19.8%), 33 (36.3%) and 13 (14.3%), respectively. The co-infection of two pathogens were detected in 17/91 (18.7%) of all samples, goats having higher rates of co-infection compared to sheep. Phylogenetic tree analysis sequence of pCS20 gene of E. ruminantium of this study was found to be in the same clade with Kumm2 and Riverside strains both from South Africa. The phylogram of SSU rRNA of Theileria ovis had longer branch length compared to all other sequences most of which were from Asia and Middle East. This study provides important data for understanding the tick-borne diseases occurrence in the study area and it is expected to improve the approach for the diagnosis and control of these diseases.


Pesticide Biochemistry and Physiology | 2017

Genetic mutations in sodium channel domain II and carboxylesterase genes associated with phenotypic resistance against synthetic pyrethroids by Rhipicephalus (Boophilus) decoloratus ticks in Uganda

Patrick Vudriko; Rika Umemiya-Shirafuji; James Okwee-Acai; Dickson Stuart Tayebwa; Joseph K. Byaruhanga; Charoonluk Jirapattharasate; Mingming Liu; Paul Franck Adjou Moumouni; Kozo Fujisaki; Xuenan Xuan; Hiroshi Suzuki

We previously reported emergence of super synthetic pyrethroid (SP) resistant Rhipicephalus (Boophilus) decoloratus ticks in Uganda. This study investigated the genetic basis of phenotypic resistance against SP in R. (B.) decoloratus and sought to identify novel diagnostic mutations for rapid detection of SP resistance in the above tick species. Genomic DNA was extracted from pooled larvae of 20 tick populations (19 of known SP susceptibility and 1 unknown susceptibility). The voltage sensitive sodium channel (VSSC) domain II S4-5 linker (SP target) and partial carboxylesterase (SP metabolizing enzyme) genes were amplified by PCR, cloned and sequenced. The resultant sequences were analyzed to determine single nucleotide polymorphisms (SNPs) associated with phenotypic resistance in the various tick populations investigated. Novel SNPs that introduced Eco RI and Eco RII restriction sites in carboxylesterase gene were identified in silco and validated with restriction fragment length polymorphism (RFLP) against 18 tick populations of known SP susceptibility. The study identified a super knock down resistance (kdr) mutation T58C in R. (B.) decoloratus VSSC associated with stable SP resistance. We further identified multiple nonsynonymous mutations in carboxylesterase of SP resistant ticks; one of which conferred novel EcoRII (G195C) restriction site for PCR-RFLP detection of SP resistance. In conclusion, this study is the first to report super kdr mutation in sodium channel domain II and multiple mutations in carboxylesterase genes that may concurrently mediate stable resistance against synthetic pyrethroids in R. (B.) decoloratus ticks from Uganda. The Eco RII based PCR-RFLP is a useful tool for rapid detection of stable SP resistant R. (B.) decoloratus ticks.


Journal of Parasitology | 2014

Mycophenolic Acid, Mycophenolate Mofetil, Mizoribine, Ribavirin, and 7-Nitroindole Inhibit Propagation of Babesia Parasites by Targeting Inosine 5′-Monophosphate Dehydrogenase

Shinuo Cao; Gabriel Oluga Aboge; Mohamad Alaa Terkawi; Mo Zhou; Ketsarin Kamyingkird; Paul Franck Adjou Moumouni; Tatsunori Masatani; Ikuo Igarashi; Yoshifumi Nishikawa; Hiroshi Suzuki; Xuenan Xuan

Abstract: The resistance of Babesia parasites to current anti-babesiosis drugs is an issue of major concern. The inosine 5′-monophosphate dehydrogenase (IMPDH) of Babesia gibsoni has been identified and characterized as a molecular drug target in our previous studies. In the present study, inhibitory effects of IMPDH inhibitors (mycophenolate mofetil, mizoribine, ribavirin, 7-nitroindole, and mycophenolic acid) were evaluated in vitro or in vivo. In the inhibition assay of recombinant B. gibsoni IMPDH activity, mycophenolate mofetil was the most potent inhibitor (IC50 = 2.58 ± 1.32 μM) while ribavirin was the least potent. The inhibitory effects of mycophenolate mofetil, mizoribine, ribavirin, and 7-nitroindole on the in vitro growths of B. gibsoni and Babesia bovis were also assessed. The results revealed that mycophenolate mofetil was the most potent inhibitor of the multiplications of both B. gibsoni (IC50 = 0.13 ± 0.05 μM) and B. bovis (IC50 = 0.97 ± 0.49 μM). Ribavirin was also the least potent for both B. gibsoni and B. bovis in vitro. Mycophenolic acid, a metabolite of mycophenolate mofetil, caused an inhibition of Babesia microti in mice with noticeable improvement in hematological parameters of the infected mice (ED50 = 44.15 ± 12.53 mg/kg). Although the report provides a non-exhaustive view of potential treatment strategy without addressing the potential adverse effect of immune suppression on infections, these results indicated that the IMPDH might be a molecular target of MPA for B. microti. Altogether, we provide a basis for development of antibabesia prodrugs by targeting IMPDH of the parasites in the treatment of babesiosis.


Acta Parasitologica | 2013

Prime-boost vaccination with plasmid DNA followed by recombinant vaccinia virus expressing BgGARP induced a partial protective immunity to inhibit Babesia gibsoni proliferation in dogs

Shinuo Cao; Ahmed Mousa; Gabriel Oluga Aboge; Ketsarin Kamyingkird; Mo Zhou; Paul Franck Adjou Moumouni; Mohamad Alaa Terkawi; Tatsunori Masatani; Yoshifumi Nishikawa; Hiroshi Suzuki; Shinya Fukumoto; Xuenan Xuan

A heterologous prime-boost vaccination regime with DNA and recombinant vaccinia virus (rvv) vectors expressing relevant antigens has been shown to induce effective immune responses against several infectious pathogens. In this study, we describe the effectiveness of the prime-boost strategy by immunizing dogs with a recombinant plasmid followed by vaccinia virus, both of which expressed the glutamic acid-rich protein (BgGARP) of Babesia gibsoni. The dogs immunized with the prime-boost regime developed a significantly high level of specific antibodies against BgGARP when compared with the control groups. The antibody level was strongly increased after a booster immunization with a recombinant vaccinia virus. Two weeks after the booster immunization with a recombinant vaccinia virus expressing BgGARP, the dogs were challenged with B. gibsoni parasite. The dogs immunized with the prime-boost regime showed partial protection, manifested as a significantly low level of parasitemia. These results indicated that this type of DNA/rvv prime-boost immunization approach may have use against B. gibsoni infection in dogs.

Collaboration


Dive into the Paul Franck Adjou Moumouni's collaboration.

Top Co-Authors

Avatar

Xuenan Xuan

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Mingming Liu

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Shinuo Cao

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Suzuki

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Guanbo Wang

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Charoonluk Jirapattharasate

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Patrick Vudriko

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Artemis Efstratiou

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Top Co-Authors

Avatar

Mo Zhou

Harbin Veterinary Research Institute

View shared research outputs
Top Co-Authors

Avatar

Huanping Guo

Obihiro University of Agriculture and Veterinary Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge