Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Gabriel Kotula is active.

Publication


Featured researches published by Paul Gabriel Kotula.


Microscopy and Microanalysis | 2003

Automated analysis of SEM X-ray spectral images: a powerful new microanalysis tool.

Paul Gabriel Kotula; Michael R. Keenan; Joseph R. Michael

Spectral imaging in the scanning electron microscope (SEM) equipped with an energy-dispersive X-ray (EDX) analyzer has the potential to be a powerful tool for chemical phase identification, but the large data sets have, in the past, proved too large to efficiently analyze. In the present work, we describe the application of a new automated, unbiased, multivariate statistical analysis technique to very large X-ray spectral image data sets. The method, based in part on principal components analysis, returns physically accurate (all positive) component spectra and images in a few minutes on a standard personal computer. The efficacy of the technique for microanalysis is illustrated by the analysis of complex multi-phase materials, particulates, a diffusion couple, and a single-pixel-detection problem.


Journal of Applied Physics | 2001

The Dynamic Competition Between Stress Generation and Relaxation Mechanisms During Coalescence of Volmer-Weber Thin Films

Jerrold A. Floro; Sean Joseph Hearne; John A. Hunter; Paul Gabriel Kotula; Eric Chason; Steven Craig Seel; Carl V. Thompson

Real-time measurements of stress evolution during the deposition of Volmer–Weber thin films reveal a complex interplay between mechanisms for stress generation and stress relaxation. We observed a generic stress evolution from compressive to tensile, then back to compressive stress as the film thickened, in amorphous and polycrystalline Ge and Si, as well as in polycrystalline Ag, Al, and Ti. Direct measurements of stress relaxation during growth interrupts demonstrate that the generic behavior occurs even in the absence of stress relaxation. When relaxation did occur, the mechanism depended sensitively on whether the film was continuous or discontinuous, on the process conditions, and on the film/substrate interfacial strength. For Ag films, interfacial shear dominated the early relaxation behavior, whereas this mechanism was negligible in Al films due to the much stronger bonding at the Al/SiO2 interface. For amorphous Ge, selective relaxation of tensile stress was observed only at elevated temperatures...


Applied Physics Letters | 2003

Atomic-layer deposition of wear-resistant coatings for microelectromechanical devices

T.M. Mayer; Jeffrey W. Elam; Steven M. George; Paul Gabriel Kotula; Ronald S. Goeke

Friction and wear are major concerns in the performance and reliability of microelectromechanical systems (MEMS) devices employing sliding contacts. While many tribological coating materials are available, most traditional surface coating processes are unable to apply conformal coatings to the high aspect ratio (height/width) structures typical of MEMS devices. We demonstrate that thin, conformal, wear-resistant coatings can be applied to Si surface-micromachined structures by atomic-layer deposition (ALD). For this demonstration, we apply 10-nm-thick films of Al2O3 using a binary reaction sequence with precursors of trimethyl aluminum and water. Deposition is carried out in a viscous flow reactor at 1 Torr and 168 °C, with N2 as a carrier gas. Cross-section transmission electron microscopy analysis shows that films are uniform to within 5% on MEMS device structures with aspect ratio ranging from 0 to >100. Films are stoichiometric Al2O3, with no evidence of contamination from other species, and are amorp...


Nano Letters | 2011

Correlated optical measurements and plasmon mapping of silver nanorods.

Beth S. Guiton; Vighter Iberi; Shuzhou Li; Donovan N. Leonard; Chad M. Parish; Paul Gabriel Kotula; M. Varela; George C. Schatz; Stephen J. Pennycook; Jon P. Camden

Plasmonics is a rapidly growing field, yet imaging of the plasmonic modes in complex nanoscale architectures is extremely challenging. Here we obtain spatial maps of the localized surface plasmon modes of high-aspect-ratio silver nanorods using electron energy loss spectroscopy (EELS) and correlate to optical data and classical electrodynamics calculations from the exact same particles. EELS mapping is thus demonstrated to be an invaluable technique for elucidating complex and overlapping plasmon modes.


Chemical Communications | 2012

Graphene-Ni-α-MnO2 and -Cu-α-MnO2 nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction.

Timothy N. Lambert; Danae J. Davis; Wei Lu; Steven J. Limmer; Paul Gabriel Kotula; Alexis Thuli; Madalyn Hungate; Gedeng Ruan; Zhong Jin; James M. Tour

Graphene-like carbon-Ni-α-MnO(2) and -Cu-α-MnO(2) blends can serve as effective catalysts for the oxygen reduction reaction with activities comparable to Pt/C.


Archive | 2006

Ultra High Temperature Ceramics for Hypersonic Vehicle Applications

Rajan Tandon; Hans Peter Dumm; Erica L. Corral; Ronald E. Loehman; Paul Gabriel Kotula

HfB{sub 2} and ZrB{sub 2} are of interest for thermal protection materials because of favorable thermal stability, mechanical properties, and oxidation resistance. We have made dense diboride ceramics with 2 to 20 % SiC by hot pressing at 2000 C and 5000 psi. High-resolution transmission electron microscopy (TEM) shows very thin grain boundary phases that suggest liquid phase sintering. Fracture toughness measurements give RT values of 4 to 6 MPam{sup 1/2}. Four-pt flexure strengths measured in air up to 1450 C were as high as 450-500 MPa. Thermal diffusivities were measured to 2000 C for ZrB{sub 2} and HfB{sub 2} ceramics with SiC contents from 2 to 20%. Thermal conductivities were calculated from thermal diffusivities and measured heat capacities. Thermal diffusivities were modeled using different two-phase composite models. These materials exhibit excellent high temperature properties and are attractive for further development for thermal protection systems.


Microscopy and Microanalysis | 2006

Tomographic Spectral Imaging with Multivariate Statistical Analysis: Comprehensive 3D Microanalysis.

Paul Gabriel Kotula; Michael R. Keenan; Joseph R. Michael

A comprehensive three-dimensional (3D) microanalysis procedure using a combined scanning electron microscope (SEM)/focused ion beam (FIB) system equipped with an energy-dispersive X-ray spectrometer (EDS) has been developed. The FIB system was used first to prepare a site-specific region for X-ray microanalysis followed by the acquisition of an electron-beam generated X-ray spectral image. A small section of material was then removed by the FIB, followed by the acquisition of another X-ray spectral image. This serial sectioning procedure was repeated 10-12 times to sample a volume of material. The series of two-spatial-dimension spectral images were then concatenated into a single data set consisting of a series of volume elements or voxels each with an entire X-ray spectrum. This four-dimensional (three real space and one spectral dimension) spectral image was then comprehensively analyzed with Sandias automated X-ray spectral image analysis software. This technique was applied to a simple Cu-Ag eutectic and a more complicated localized corrosion study where the powerful site-specific comprehensive analysis capability of tomographic spectral imaging (TSI) combined with multivariate statistical analysis is demonstrated.


Advanced Materials | 2011

Fast lithium-ion conducting thin-film electrolytes integrated directly on flexible substrates for high-power solid-state batteries.

Jon F. Ihlefeld; Paul G. Clem; B.L. Doyle; Paul Gabriel Kotula; Kyle R. Fenton; Christopher A. Apblett

By utilizing an equilibrium processing strategy that enables co-firing of oxides and base metals, a means to integrate the lithium-stable fast lithium-ion conductor lanthanum lithium tantalate directly with a thin copper foil current collector appropriate for a solid-state battery is presented. This resulting thin-film electrolyte possesses a room temperature lithium-ion conductivity of 1.5 × 10(-5) S cm(-1) , which has the potential to increase the power of a solid-state battery over current state of the art.


Microscopy and Microanalysis | 2006

Application of multivariate statistical analysis to STEM X-ray spectral images: interfacial analysis in microelectronics.

Paul Gabriel Kotula; Michael R. Keenan

Multivariate statistical analysis methods have been applied to scanning transmission electron microscopy (STEM) energy-dispersive X-ray spectral images. The particular application of the multivariate curve resolution (MCR) technique provides a high spectral contrast view of the raw spectral image. The power of this approach is demonstrated with a microelectronics failure analysis. Specifically, an unexpected component describing a chemical contaminant was found, as well as a component consistent with a foil thickness change associated with the focused ion beam specimen preparation process. The MCR solution is compared with a conventional analysis of the same spectral image data set.


IEEE Transactions on Nuclear Science | 2012

Initial Assessment of the Effects of Radiation on the Electrical Characteristics of

Matthew Marinella; Scott M. Dalton; Patrick R. Mickel; Paul E. Dodd; M.R. Shaneyfelt; Edward S. Bielejec; Gyorgy Vizkelethy; Paul Gabriel Kotula

Radiation-induced effects on the electrical characteristics of TaOx memristive (or redox) memory are experimentally assessed. 10 keV x-ray irradiation is observed to cause switching of the memristors from high to low resistance states, as well as functional failure due to cumulative dose. Gamma rays and 4.5 MeV energy protons are not observed to cause significant change in resistance state or device function at levels up to 2.5 Mrad(Si) and 5 Mrad(Si) protons, respectively. 105 MeV and 480 MeV protons cause switching of the memristors from high to low resistance states in some cases, but do not exhibit a consistent degradation. 800 keV silicon ions are observed to cause resistance degradation, with an inverse dependence of resistance on oxygen vacancy density. Variation between different devices appears to be a key factor in determining the electrical response resulting from irradiation. The proposed degradation mechanism likely involves the creation of oxygen vacancies, but a better fundamental understanding of switching is needed before a definitive understanding of radiation degradation can be achieved.

Collaboration


Dive into the Paul Gabriel Kotula's collaboration.

Top Co-Authors

Avatar

Joseph R. Michael

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Michael R. Keenan

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Somuri V. Prasad

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Mark A. Rodriguez

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brad Lee Boyce

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B.L. Doyle

Sandia National Laboratories

View shared research outputs
Top Co-Authors

Avatar

Joseph I. Goldstein

University of Massachusetts Amherst

View shared research outputs
Researchain Logo
Decentralizing Knowledge