Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul H. Bauer is active.

Publication


Featured researches published by Paul H. Bauer.


Bioorganic & Medicinal Chemistry Letters | 2003

3-(2-carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid: an allosteric inhibitor of fructose-1,6-bisphosphatase at the AMP site.

Stephen W. Wright; Anthony A. Carlo; Dennis E. Danley; David L. Hageman; George A. Karam; Mahmoud N. Mansour; Lester D. McClure; Jayvardhan Pandit; Gayle K. Schulte; Judith L. Treadway; Ing-Kae Wang; Paul H. Bauer

3-(2-Carboxyethyl)-4,6-dichloro-1H-indole-2-carboxylic acid (MDL-29951), an antagonist of the glycine site of the NMDA receptor, has been found to be an allosteric inhibitor of the enzyme fructose 1,6-bisphosphatase. The compound binds at the AMP regulatory site by X-ray crystallography. This represents a new approach to inhibition of fructose 1,6-bisphosphatase and serves as a lead for further drug design.


Journal of Medicinal Chemistry | 2013

Structure-Based Discovery of Novel Amide-Containing Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors

Xiaozhang Zheng; Paul H. Bauer; Timm Baumeister; Alexandre J. Buckmelter; Maureen Caligiuri; Karl H. Clodfelter; Bingsong Han; Yen-Ching Ho; Nikolai Kley; Jian Lin; Dominic J. Reynolds; Geeta Sharma; Chase Smith; Zhongguo Wang; Peter S. Dragovich; Janet Gunzner-Toste; Bianca M. Liederer; Justin Ly; Thomas O’Brien; Angela Oh; Leslie Wang; Weiru Wang; Yang Xiao; Mark Zak; Guiling Zhao; Po-wai Yuen; Kenneth W. Bair

Crystal structures of several urea- and thiourea-derived compounds in complex with the nicotinamide phosphoribosyltransferase (Nampt) protein were utilized to design a potent amide-containing inhibitor bearing an aza-indole moiety (7, Nampt BC IC50 = 9.0 nM, A2780 cell proliferation IC50 = 10 nM). The Nampt-7 cocrystal structure was subsequently obtained and enabled the design of additional amide-containing inhibitors which incorporated various other fused 6,5-heterocyclic moieties and biaryl sulfone or sulfonamide motifs. Additional modifications of these molecules afforded many potent biaryl sulfone-containing Nampt inhibitors which also exhibited favorable in vitro ADME properties (microsomal and hepatocyte stability, MDCK permeability, plasma protein binding). An optimized compound (58) was a potent inhibitor of multiple cancer cell lines (IC50 <10 nM vs U251, HT1080, PC3, MiaPaCa2, and HCT116 lines), displayed acceptable mouse PK properties (F = 41%, CL = 52.4 mL/min/kg), and exhibited robust efficacy in a U251 mouse xenograft model.


Bioorganic & Medicinal Chemistry Letters | 2001

Allosteric inhibition of fructose-1,6-bisphosphatase by anilinoquinazolines

Stephen W. Wright; David L. Hageman; Lester D. McClure; Anthony A. Carlo; Judith L. Treadway; Alan M. Mathiowetz; Jane M. Withka; Paul H. Bauer

Anilinoquinazolines currently of interest as inhibitors of tyrosine kinases have been found to be allosteric inhibitors of the enzyme fructose 1,6-bisphosphatase. These represent a new approach to inhibition of F16BPase and serve as leads for further drug design. Enzyme inhibition is achieved by binding at an unidentified allosteric site.


Journal of Medicinal Chemistry | 2013

Structure-Based Identification of Ureas as Novel Nicotinamide Phosphoribosyltransferase (Nampt) Inhibitors

Xiaozhang Zheng; Paul H. Bauer; Timm Baumeister; Alexandre J. Buckmelter; Maureen Caligiuri; Karl H. Clodfelter; Bingsong Han; Yen-Ching Ho; Nikolai Kley; Jian Lin; Dominic J. Reynolds; Geeta Sharma; Chase Smith; Zhongguo Wang; Peter S. Dragovich; Angela Oh; Weiru Wang; Mark Zak; Janet Gunzner-Toste; Guiling Zhao; Po-wai Yuen; Kenneth W. Bair

Nicotinamide phosphoribosyltransferase (Nampt) is a promising anticancer target. Virtual screening identified a thiourea analogue, compound 5, as a novel highly potent Nampt inhibitor. Guided by the cocrystal structure of 5, SAR exploration revealed that the corresponding urea compound 7 exhibited similar potency with an improved solubility profile. These studies also indicated that a 3-pyridyl group was the preferred substituent at one inhibitor terminus and also identified a urea moiety as the optimal linker to the remainder of the inhibitor structure. Further SAR optimization of the other inhibitor terminus ultimately yielded compound 50 as a urea-containing Nampt inhibitor which exhibited excellent biochemical and cellular potency (enzyme IC50 = 0.007 μM; A2780 IC50 = 0.032 μM). Compound 50 also showed excellent in vivo antitumor efficacy when dosed orally in an A2780 ovarian tumor xenograft model (TGI of 97% was observed on day 17).


Nucleic Acids Research | 2015

A cytoplasmic pathway for gapmer antisense oligonucleotide-mediated gene silencing in mammalian cells

Daniela Castanotto; Min Lin; Claudia M. Kowolik; LiAnn Wang; Xiao-Qin Ren; Harris S. Soifer; Troels Koch; Bo Rode Hansen; Henrik Oerum; Brian Armstrong; Zhigang Wang; Paul H. Bauer; John J. Rossi; Cy A. Stein

Antisense oligonucleotides (ASOs) are known to trigger mRNA degradation in the nucleus via an RNase H-dependent mechanism. We have now identified a putative cytoplasmic mechanism through which ASO gapmers silence their targets when transfected or delivered gymnotically (i.e. in the absence of any transfection reagent). We have shown that the ASO gapmers can interact with the Ago-2 PAZ domain and can localize into GW-182 mRNA-degradation bodies (GW-bodies). The degradation products of the targeted mRNA, however, are not generated by Ago-2-directed cleavage. The apparent identification of a cytoplasmic pathway complements the previously known nuclear activity of ASOs and concurrently suggests that nuclear localization is not an absolute requirement for gene silencing.


Bioorganic & Medicinal Chemistry Letters | 2013

Identification of amides derived from 1H-pyrazolo[3,4-b]pyridine-5-carboxylic acid as potent inhibitors of human nicotinamide phosphoribosyltransferase (NAMPT).

Xiaozhang Zheng; Kenneth W. Bair; Paul H. Bauer; Timm Baumeister; Krista K. Bowman; Alexandre J. Buckmelter; Maureen Caligiuri; Karl H. Clodfelter; Yezhen Feng; Bingsong Han; Yen-Ching Ho; Nikolai Kley; Hong Li; Xiaorong Liang; Bianca M. Liederer; Jian Lin; Justin Ly; Thomas O’Brien; Jason Oeh; Angela Oh; Dominic J. Reynolds; Deepak Sampath; Geeta Sharma; Nicholas J. Skelton; Chase Smith; Jarrod Tremayne; Leslie Wang; Weiru Wang; Zhongguo Wang; Hongxing Wu

Potent, 1H-pyrazolo[3,4-b]pyridine-containing inhibitors of the human nicotinamide phosphoribosyltransferase (NAMPT) enzyme were identified using structure-based design techniques. Many of these compounds exhibited nanomolar antiproliferation activities against human tumor lines in in vitro cell culture experiments, and a representative example (compound 26) demonstrated encouraging in vivo efficacy in a mouse xenograft tumor model derived from the A2780 cell line. This molecule also exhibited reduced rat retinal exposures relative to a previously studied imidazo-pyridine-containing NAMPT inhibitor. Somewhat surprisingly, compound 26 was only weakly active in vitro against mouse and monkey tumor cell lines even though it was a potent inhibitor of NAMPT enzymes derived from these species. The compound also exhibited only minimal effects on in vivo NAD levels in mice, and these changes were considerably less profound than those produced by an imidazo-pyridine-containing NAMPT inhibitor. The crystal structures of compound 26 and the corresponding PRPP-derived ribose adduct in complex with NAMPT were also obtained.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of potent and efficacious urea-containing nicotinamide phosphoribosyltransferase (NAMPT) inhibitors with reduced CYP2C9 inhibition properties.

Janet Gunzner-Toste; Guiling Zhao; Paul H. Bauer; Timm Baumeister; Alexandre J. Buckmelter; Maureen Caligiuri; Karl H. Clodfelter; B Fu; Bingsong Han; Yen-Ching Ho; Nikolai Kley; Xiaorong Liang; Bianca M. Liederer; Jian Lin; S Mukadam; Thomas O'Brien; Angela Oh; Dominic J. Reynolds; Geeta Sharma; Nicholas J. Skelton; Chase Smith; J Sodhi; Weiru Wang; Zhongguo Wang; Yang Xiao; Po-wai Yuen; Mark Zak; Lei Zhang; Xiaozhang Zheng; Kenneth W. Bair

Potent, reversible inhibition of the cytochrome P450 CYP2C9 isoform was observed in a series of urea-containing nicotinamide phosphoribosyltransferase (NAMPT) inhibitors. This unwanted property was successfully removed from the described inhibitors through a combination of structure-based design and medicinal chemistry activities. An optimized compound which did not inhibit CYP2C9 exhibited potent anti-NAMPT activity (17; BC NAMPT IC50=3 nM; A2780 antiproliferative IC50=70 nM), good mouse PK properties, and was efficacious in an A2780 mouse xenograft model. The crystal structure of this compound in complex with the NAMPT protein is also described.


Journal of Biomolecular Screening | 2005

Multiplexed G-Protein–Coupled Receptor Ca₂+ Flux Assays for High-Throughput Screening

Juan Miret; Jiansu Zhang; Hyunsuk Min; Karina Lewis; Mark Roth; Maura E. Charlton; Paul H. Bauer

An early drug discovery approach focusing on gene families can benefit fromstrategies that exploit common signalingmechanisms to more effectively identify and characterize novel chemical lead structures. Multiplexing, defined as the screening of multiple targets within the same experiment, is an example of this strategy. Here, the authors describe a technique that allows multiplexing of a common assay type used to study G-protein–coupled receptors: changes in intracellular Ca2+ levels as measured by Molecular Devices fluorometric imaging plate reader (FLIPR®). The multiplexed FLIPR assays showed the expected pharmacological properties of single assays, with good reproducibility and Z• factors. The authors used them to screen large compound libraries in 2 multiplexed assay designs. The 1st used a single-cell line expressing 2 different receptors and the 2nd amixture of 2 cell lines of the same type each expressing distinct receptors. Screening using thesemultiplexed assays produced significant savings in reagents, time, and human resources and allowed the authors to quickly identify specific and selective hits.


Chemical Biology & Drug Design | 2007

Bipiperidinyl carboxylic acid amides as potent, selective, and functionally active CCR4 antagonists.

Cyrille Kuhn; Marc Bazin; Laurence Philippe; Jiansu Zhang; Laurie Tylaska; Juan Miret; Paul H. Bauer

A cell‐based assay for the chemokine G‐protein‐coupled receptor CCR4 was developed, and used to screen a small‐molecule compound collection in a multiplex format. A series of bipiperidinyl carboxylic acid amides amenable to parallel chemistry were derived that were potent and selective antagonists of CCR4. One prototype compound was shown to be active in a functional model of chemotaxis, making it a useful chemical tool to explore the role of CCR4 in asthma, allergy, diabetes, and cancer.


Journal of Medicinal Chemistry | 2002

ANILINOQUINAZOLINE INHIBITORS OF FRUCTOSE 1,6-BISPHOSPHATASE BIND AT A NOVEL ALLOSTERIC SITE: SYNTHESIS, IN VITRO CHARACTERIZATION, AND X-RAY CRYSTALLOGRAPHY

Stephen W. Wright; Carlo Aa; Carty; Dennis E. Danley; David L. Hageman; Karam Ga; Levy Cb; Mahmoud N. Mansour; Mathiowetz Am; Lester D. McClure; Nestor Nb; McPherson Rk; Jayvardhan Pandit; Pustilnik Lr; Schulte Gk; Soeller Wc; Judith L. Treadway; Wang Ik; Paul H. Bauer

Collaboration


Dive into the Paul H. Bauer's collaboration.

Researchain Logo
Decentralizing Knowledge