Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul H. Delano is active.

Publication


Featured researches published by Paul H. Delano.


The Journal of Neuroscience | 2007

Selective Attention to Visual Stimuli Reduces Cochlear Sensitivity in Chinchillas

Paul H. Delano; Diego Elgueda; Carlos M. Hamamé; Luis Robles

It is generally accepted that during periods of attention to specific stimuli there are changes in the neural activity of central auditory structures; however, it is controversial whether attention can modulate auditory responses at the cochlear level. Several studies performed in animals as well as in humans have attempted to find a modulation of cochlear responses during visual attention with contradictory results. Here, we have appraised cochlear sensitivity in behaving chinchillas by measuring, with a chronically implanted round-window electrode, sound-evoked auditory-nerve compound action potentials and cochlear microphonics, a measure of outer hair cell function, during selective attention to visual stimuli. Chinchillas were trained in a visual discrimination or in an auditory frequency discrimination two-choice task. We found a significant decrease of cochlear sensitivity during the period of attention to visual stimuli in the animals performing the visual discrimination task, but not in those performing the auditory task, demonstrating that this physiological effect is related to selective attention to visual stimuli rather than to an increment in arousal level. Furthermore, the magnitude of the cochlear-sensitivity reductions increased in sessions performed with shorter target-light durations (4–0.5 s), suggesting that this effect is stronger for higher attentional demands of the task. These results demonstrate that afferent auditory activity is modulated by selective attention as early as at sensory transduction, possibly through activation of olivocochlear efferent fibers.


PLOS ONE | 2012

Auditory cortex basal activity modulates cochlear responses in chinchillas.

Alex León; Diego Elgueda; María A. Silva; Carlos M. Hamamé; Paul H. Delano

Background The auditory efferent system has unique neuroanatomical pathways that connect the cerebral cortex with sensory receptor cells. Pyramidal neurons located in layers V and VI of the primary auditory cortex constitute descending projections to the thalamus, inferior colliculus, and even directly to the superior olivary complex and to the cochlear nucleus. Efferent pathways are connected to the cochlear receptor by the olivocochlear system, which innervates outer hair cells and auditory nerve fibers. The functional role of the cortico-olivocochlear efferent system remains debated. We hypothesized that auditory cortex basal activity modulates cochlear and auditory-nerve afferent responses through the efferent system. Methodology/Principal Findings Cochlear microphonics (CM), auditory-nerve compound action potentials (CAP) and auditory cortex evoked potentials (ACEP) were recorded in twenty anesthetized chinchillas, before, during and after auditory cortex deactivation by two methods: lidocaine microinjections or cortical cooling with cryoloops. Auditory cortex deactivation induced a transient reduction in ACEP amplitudes in fifteen animals (deactivation experiments) and a permanent reduction in five chinchillas (lesion experiments). We found significant changes in the amplitude of CM in both types of experiments, being the most common effect a CM decrease found in fifteen animals. Concomitantly to CM amplitude changes, we found CAP increases in seven chinchillas and CAP reductions in thirteen animals. Although ACEP amplitudes were completely recovered after ninety minutes in deactivation experiments, only partial recovery was observed in the magnitudes of cochlear responses. Conclusions/Significance These results show that blocking ongoing auditory cortex activity modulates CM and CAP responses, demonstrating that cortico-olivocochlear circuits regulate auditory nerve and cochlear responses through a basal efferent tone. The diversity of the obtained effects suggests that there are at least two functional pathways from the auditory cortex to the cochlea.


Frontiers in Neurology | 2015

Vertigo and Dizziness in the Elderly

Lara Fernández; Hayo A. Breinbauer; Paul H. Delano

The prevalence of vertigo and dizziness in people aged more than 60 years reaches 30%, and due to aging of world population, the number of patients is rapidly increasing. The presence of dizziness in the elderly is a strong predictor of falls, which is the leading cause of accidental death in people older than 65 years. Balance disorders in the elderly constitute a major public health problem, and require an adequate diagnosis and management by trained physicians. In the elderly, common causes of vertigo may manifest differently, as patients tend to report less rotatory vertigo and more non-specific dizziness and instability than younger patients, making diagnosis more complex. In this mini review, age-related degenerative processes that affect balance are presented. Diagnostic and therapeutic approaches oriented to the specific impaired system, including visual, proprioceptive, and vestibular pathways, are proposed. In addition, presbystasis – the loss of vestibular and balance functions associated with aging – benign paroxysmal positional vertigo, and stroke (in acute syndromes) should always be considered.


Jaro-journal of The Association for Research in Otolaryngology | 2015

The Olivocochlear Reflex Strength and Cochlear Sensitivity are Independently Modulated by Auditory Cortex Microstimulation

Constantino D. Dragicevic; Cristian Aedo; Alex León; Macarena Bowen; Natalia Jara; Gonzalo Terreros; Luis Robles; Paul H. Delano

In mammals, efferent projections to the cochlear receptor are constituted by olivocochlear (OC) fibers that originate in the superior olivary complex. Medial and lateral OC neurons make synapses with outer hair cells and with auditory nerve fibers, respectively. In addition to the OC system, there are also descending projections from the auditory cortex that are directed towards the thalamus, inferior colliculus, cochlear nucleus, and superior olivary complex. Olivocochlear function can be assessed by measuring a brainstem reflex mediated by auditory nerve fibers, cochlear nucleus neurons, and OC fibers. Although it is known that the OC reflex is activated by contralateral acoustic stimulation and produces a suppression of cochlear responses, the influence of cortical descending pathways in the OC reflex is largely unknown. Here, we used auditory cortex electrical microstimulation in chinchillas to study a possible cortical modulation of cochlear and auditory nerve responses to tones in the absence and presence of contralateral noise. We found that cortical microstimulation produces two different peripheral modulations: (i) changes in cochlear sensitivity evidenced by amplitude modulation of cochlear microphonics and auditory nerve compound action potentials and (ii) enhancement or suppression of the OC reflex strength as measured by auditory nerve responses, which depended on the intersubject variability of the OC reflex. Moreover, both corticofugal effects were not correlated, suggesting the presence of two functionally different efferent pathways. These results demonstrate that auditory cortex electrical microstimulation independently modulates the OC reflex strength and cochlear sensitivity.


Frontiers in Systems Neuroscience | 2015

Corticofugal modulation of peripheral auditory responses

Gonzalo Terreros; Paul H. Delano

The auditory efferent system originates in the auditory cortex and projects to the medial geniculate body (MGB), inferior colliculus (IC), cochlear nucleus (CN) and superior olivary complex (SOC) reaching the cochlea through olivocochlear (OC) fibers. This unique neuronal network is organized in several afferent-efferent feedback loops including: the (i) colliculo-thalamic-cortico-collicular; (ii) cortico-(collicular)-OC; and (iii) cortico-(collicular)-CN pathways. Recent experiments demonstrate that blocking ongoing auditory-cortex activity with pharmacological and physical methods modulates the amplitude of cochlear potentials. In addition, auditory-cortex microstimulation independently modulates cochlear sensitivity and the strength of the OC reflex. In this mini-review, anatomical and physiological evidence supporting the presence of a functional efferent network from the auditory cortex to the cochlear receptor is presented. Special emphasis is given to the corticofugal effects on initial auditory processing, that is, on CN, auditory nerve and cochlear responses. A working model of three parallel pathways from the auditory cortex to the cochlea and auditory nerve is proposed.


Frontiers in Systems Neuroscience | 2015

Stronger efferent suppression of cochlear neural potentials by contralateral acoustic stimulation in awake than in anesthetized chinchilla

Cristian Aedo; Eduardo Tapia; Elizabeth Pavez; Diego Elgueda; Paul H. Delano; Luis Robles

There are two types of sensory cells in the mammalian cochlea, inner hair cells, which make synaptic contact with auditory-nerve afferent fibers, and outer hair cells that are innervated by crossed and uncrossed medial olivocochlear (MOC) efferent fibers. Contralateral acoustic stimulation activates the uncrossed efferent MOC fibers reducing cochlear neural responses, thus modifying the input to the central auditory system. The chinchilla, among all studied mammals, displays the lowest percentage of uncrossed MOC fibers raising questions about the strength and frequency distribution of the contralateral-sound effect in this species. On the other hand, MOC effects on cochlear sensitivity have been mainly studied in anesthetized animals and since the MOC-neuron activity depends on the level of anesthesia, it is important to assess the influence of anesthesia in the strength of efferent effects. Seven adult chinchillas (Chinchilla laniger) were chronically implanted with round-window electrodes in both cochleae. We compared the effect of contralateral sound in awake and anesthetized condition. Compound action potentials (CAP) and cochlear microphonics (CM) were measured in the ipsilateral cochlea in response to tones in absence and presence of contralateral sound. Control measurements performed after middle-ear muscles section in one animal discarded any possible middle-ear reflex activation. Contralateral sound produced CAP amplitude reductions in all chinchillas, with suppression effects greater by about 1–3 dB in awake than in anesthetized animals. In contrast, CM amplitude increases of up to 1.9 dB were found in only three awake chinchillas. In both conditions the strongest efferent effects were produced by contralateral tones at frequencies equal or close to those of ipsilateral tones. Contralateral CAP suppressions for 1–6 kHz ipsilateral tones corresponded to a span of uncrossed MOC fiber innervation reaching at least the central third of the chinchilla cochlea.


Acta otorrinolaringológica española | 2011

Manejo endoscópico de mucoceles de senos paranasales: experiencia en 46 pacientes

Rodolfo Nazar; Alfredo Naser; Javiera Pardo; Juan Fullá; Jesús Rodríguez-Jorge; Paul H. Delano

OBJECTIVE The purpose of this study was to determine changes in the surgical treatment of patients with the diagnosis of paranasal mucoceles managed in a Latin American hospital. We hypothesised that endonasal endoscopic surgeries had emerged as the main treatment option for this disease in the last five years. METHODS A retrospective chart review of all patients who were diagnosed with paranasal sinus mucoceles and treated at the Otorhinolaryngology Head and Neck Department of our hospital from 2002 to 2010 was performed. Patient demographic data, mucoceles location, symptoms, surgical approach and complications were recorded. RESULTS A total of 46 patients were included (27 males; 19 females). This series include 29 patients (63%) with frontal or frontoethmoidal mucoceles, 14 (30.4%) with maxillary and 3 (6.5%) with sphenoid mucoceles. Ninety-five percent of the patients were treated with intranasal endoscopic surgery. Complications occurred only in 7 cases (15.2%). CONCLUSIONS This study confirms that over the last 9 years significant changes have occurred in the surgical treatment of paranasal mucocele in our hospital, as endoscopic surgeries increased from 34% to over 90% as the first option of treatment for mucoceles.


The Journal of Neuroscience | 2016

Selective Attention to Visual Stimuli Using Auditory Distractors Is Altered in Alpha-9 Nicotinic Receptor Subunit Knock-Out Mice.

Gonzalo Terreros; Pascal Jorratt; Cristian Aedo; Ana Belén Elgoyhen; Paul H. Delano

During selective attention, subjects voluntarily focus their cognitive resources on a specific stimulus while ignoring others. Top-down filtering of peripheral sensory responses by higher structures of the brain has been proposed as one of the mechanisms responsible for selective attention. A prerequisite to accomplish top-down modulation of the activity of peripheral structures is the presence of corticofugal pathways. The mammalian auditory efferent system is a unique neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear bundle, and it has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we trained wild-type and α-9 nicotinic receptor subunit knock-out (KO) mice, which lack cholinergic transmission between medial olivocochlear neurons and outer hair cells, in a two-choice visual discrimination task and studied the behavioral consequences of adding different types of auditory distractors. In addition, we evaluated the effects of contralateral noise on auditory nerve responses as a measure of the individual strength of the olivocochlear reflex. We demonstrate that KO mice have a reduced olivocochlear reflex strength and perform poorly in a visual selective attention paradigm. These results confirm that an intact medial olivocochlear transmission aids in ignoring auditory distraction during selective attention to visual stimuli. SIGNIFICANCE STATEMENT The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through the olivocochlear system. It has been proposed to function as a top-down filter of peripheral auditory responses during attention to cross-modal stimuli. However, to date, there is no conclusive evidence of the involvement of olivocochlear neurons in selective attention paradigms. Here, we studied the behavioral consequences of adding different types of auditory distractors in a visual selective attention task in wild-type and α-9 nicotinic receptor knock-out (KO) mice. We demonstrate that KO mice perform poorly in the selective attention paradigm and that an intact medial olivocochlear transmission aids in ignoring auditory distractors during attention.


Journal of the Acoustical Society of America | 2015

Individual and sex distinctiveness in bark calls of domestic chinchillas elicited in a distress context

Felipe N. Moreno-Gómez; Alex León; Nelson A. Velásquez; Mario Penna; Paul H. Delano

Animals obtain information about their social environment by means of communication signals, which provide relevant subtle cues for individual recognition. An important requisite for this process is the existence of larger between- than within-emitter signal variation. Acoustic signals are complex traits susceptible of variation in their spectral and temporal components, implying that signal distinctiveness can result from differences in single or various acoustic components. In this study, domestic chinchillas were induced to vocalize in a distress context to describe the acoustic characteristics of the bark calls, and to determine features that denote the potential value of this vocalization for individual and/or sexual recognition. The results demonstrate that the variation in spectral and temporal components of the bark calls of chinchillas elicited under a distress context is larger between than within individuals, suggesting the potential of these signals for distinctiveness between individual signalers, although the potential of this call type for sex distinctiveness is quite limited. These results combined with previous studies on auditory capabilities of chinchillas contribute to position this rodent as a valuable model species for studying auditory-vocal interactions.


Journal of Physiology-paris | 2010

A visual cue modulates the firing rate and latency of auditory-cortex neurons in the chinchilla.

Paul H. Delano; Diego Elgueda; Fernando Ramirez; Luis Robles; Pedro Maldonado

We studied single and multi-unit activity recorded with tetrodes, from the left auditory cortex of awake chinchillas while they performed a frequency discrimination task. Auditory stimuli were preceded by a silent visual cue. We examined firing rates and first-spike latencies of 181 units in the presence and absence of the visual cue. To discard possible auditory artifacts produced by the visual cue, cochlear potentials were simultaneously recorded by an electrode positioned at the round window of the right cochlea. We found that the visual stimulus altered the firing rate and the mean first-spike latency of 9% and 18% of the recorded auditory-cortex cells, respectively. Furthermore, we found that the subset of neurons in which the firing rate was modulated by the visual cue was distinct from the subset of neurons that changed their latency in the presence of the visual cue. Adding both groups, a visual-stimulus modulated the firing characteristics of 27% of the recorded auditory-cortex neurons in the awake chinchilla. Our results imply that in the auditory cortex, latency and firing rate can be independently altered by visual stimuli, and that both types of analysis must be considered in order to fully understand neural cross-modal interactions.

Collaboration


Dive into the Paul H. Delano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge