Paul Hardenbol
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Hardenbol.
Science | 2009
John Eid; Adrian Fehr; Jeremy Gray; Khai Luong; John Lyle; Geoff Otto; Paul Peluso; David Rank; Primo Baybayan; Brad Bettman; Arkadiusz Bibillo; Keith Bjornson; Bidhan Chaudhuri; Frederick Christians; Ronald L. Cicero; Sonya Clark; Ravindra Dalal; Alex deWinter; John Dixon; Mathieu Foquet; Alfred Gaertner; Paul Hardenbol; Cheryl Heiner; Kevin Hester; David Holden; Gregory Kearns; Xiangxu Kong; Ronald Kuse; Yves Lacroix; Steven Lin
We present single-molecule, real-time sequencing data obtained from a DNA polymerase performing uninterrupted template-directed synthesis using four distinguishable fluorescently labeled deoxyribonucleoside triphosphates (dNTPs). We detected the temporal order of their enzymatic incorporation into a growing DNA strand with zero-mode waveguide nanostructure arrays, which provide optical observation volume confinement and enable parallel, simultaneous detection of thousands of single-molecule sequencing reactions. Conjugation of fluorophores to the terminal phosphate moiety of the dNTPs allows continuous observation of DNA synthesis over thousands of bases without steric hindrance. The data report directly on polymerase dynamics, revealing distinct polymerization states and pause sites corresponding to DNA secondary structure. Sequence data were aligned with the known reference sequence to assay biophysical parameters of polymerization for each template position. Consensus sequences were generated from the single-molecule reads at 15-fold coverage, showing a median accuracy of 99.3%, with no systematic error beyond fluorophore-dependent error rates.
Nature Biotechnology | 2003
Paul Hardenbol; Johan Banér; Maneesh Jain; Mats Nilsson; Eugeni Namsaraev; George Karlin-Neumann; Hossein Fakhrai-Rad; Mostafa Ronaghi; Thomas D. Willis; Ulf Landegren; Ronald W. Davis
We report on the development of molecular inversion probe (MIP) genotyping, an efficient technology for large-scale single nucleotide polymorphism (SNP) analysis. This technique uses MIPs to produce inverted sequences, which undergo a unimolecular rearrangement and are then amplified by PCR using common primers and analyzed using universal sequence tag DNA microarrays, resulting in highly specific genotyping. With this technology, multiplex analysis of more than 1,000 probes in a single tube can be done using standard laboratory equipment. Genotypes are generated with a high call rate (95%) and high accuracy (>99%) as determined by independent sequencing.
Nature Genetics | 2005
David G. Clayton; Neil M Walker; Deborah J. Smyth; Rebecca Pask; Jason D. Cooper; Lisa M. Maier; Luc J. Smink; Alex C. Lam; Nigel R Ovington; Helen Stevens; Sarah Nutland; Joanna M. M. Howson; Malek Faham; Martin Moorhead; Hywel B. Jones; Matthew Falkowski; Paul Hardenbol; Thomas D. Willis; John A. Todd
The main problems in drawing causal inferences from epidemiological case-control studies are confounding by unmeasured extraneous factors, selection bias and differential misclassification of exposure. In genetics the first of these, in the form of population structure, has dominated recent debate. Population structure explained part of the significant +11.2% inflation of test statistics we observed in an analysis of 6,322 nonsynonymous SNPs in 816 cases of type 1 diabetes and 877 population-based controls from Great Britain. The remainder of the inflation resulted from differential bias in genotype scoring between case and control DNA samples, which originated from two laboratories, causing false-positive associations. To avoid excluding SNPs and losing valuable information, we extended the genomic control method by applying a variable downweighting to each SNP.
Nature Biotechnology | 2016
Grace X Y Zheng; Billy Lau; Michael Schnall-Levin; Mirna Jarosz; John M. Bell; Christopher M Hindson; Sofia Kyriazopoulou-Panagiotopoulou; Donald A Masquelier; Landon Merrill; Jessica M Terry; Patrice A Mudivarti; Paul W Wyatt; Rajiv Bharadwaj; Anthony J Makarewicz; Yuan Li; Phillip Belgrader; Andrew D Price; Adam J Lowe; Patrick Marks; Gerard M Vurens; Paul Hardenbol; Luz Montesclaros; Melissa Luo; Lawrence Greenfield; Alexander Wong; David E Birch; Steven W Short; Keith P Bjornson; Pranav Patel; Erik S. Hopmans
Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information. We generate haplotype blocks in a nuclear trio that are concordant with expected inheritance patterns and phase a set of structural variants. We also resolve the structure of the EML4-ALK gene fusion in the NCI-H2228 cancer cell line using phased exome sequencing. Finally, we assign genetic aberrations to specific megabase-scale haplotypes generated from whole-genome sequencing of a primary colorectal adenocarcinoma. This approach resolves haplotype information using up to 100 times less genomic DNA than some methods and enables the accurate detection of structural variants.
Pharmacogenomics | 2007
Carmen Dumaual; Xin Miao; Thomas Daly; Carsten Bruckner; Reuben Njau; Dong-Jing Fu; Sandra Close-Kirkwood; Nancy L. Bauer; Nancy Watanabe; Paul Hardenbol; Richard D. Hockett
The combined effects of multiple polymorphisms in several drug-metabolizing enzyme and transporter genes can contribute to considerable interindividual variation in drug disposition and response. Therefore, it has been of increasing interest to generate scalable, flexible and cost-effective technologies for large-scale genotyping of the drug-metabolizing enzyme and transporter genes. However, the number of drug-metabolizing enzyme and transporter gene variants exceeds the capacity of current technologies to comprehensively assess multiple polymorphisms in a single, multiplexed assay. The Targeted Genotyping System (Affymetrix, CA, USA) provides a solution to this challenge, by combining molecular inversion probe technology with universal microarrays to provide a method that is capable of analyzing thousands of variants in a single reaction, while remaining relatively insensitive to cross-reactivity between reaction components. This review will focus on the Targeted Genotyping System and how this technology was adapted to enable comprehensive analysis of drug-metabolizing enzyme and transporter gene polymorphisms.
PLOS Genetics | 2005
Fuli Yu; Pardis C. Sabeti; Paul Hardenbol; Qing Fu; Ben Fry; Xiuhua Lu; Sy Ghose; Richard Vega; Ag Perez; Shiran Pasternak; Suzanne M. Leal; Thomas D. Willis; David L. Nelson; John W. Belmont; Richard A. Gibbs
A region of approximately one megabase of human Chromosome 12 shows extensive linkage disequilibrium in Utah residents with ancestry from northern and western Europe. This strikingly large linkage disequilibrium block was analyzed with statistical and experimental methods to determine whether natural selection could be implicated in shaping the current genome structure. Extended Haplotype Homozygosity and Relative Extended Haplotype Homozygosity analyses on this region mapped a core region of the strongest conserved haplotype to the exon 1 of the Spinocerebellar ataxia type 2 gene (SCA2). Direct DNA sequencing of this region of the SCA2 gene revealed a significant association between a pre-expanded allele [(CAG)8CAA(CAG)4CAA(CAG)8] of CAG repeats within exon 1 and the selected haplotype of the SCA2 gene. A significantly negative Tajimas D value (−2.20, p < 0.01) on this site consistently suggested selection on the CAG repeat. This region was also investigated in the three other populations, none of which showed signs of selection. These results suggest that a recent positive selection of the pre-expansion SCA2 CAG repeat has occurred in Utah residents with European ancestry.
European Journal of Human Genetics | 2006
Martin Moorhead; Paul Hardenbol; Farooq Siddiqui; Matthew Falkowski; Carsten Bruckner; James Ireland; Hywel B. Jones; Maneesh Jain; Thomas D. Willis; Malek Faham
High-throughput genotyping technologies that enable large association studies are already available. Tools for genotype determination starting from raw signal intensities need to be automated, robust, and flexible to provide optimal genotype determination given the specific requirements of a study. The key metrics describing the performance of a custom genotyping study are assay conversion, call rate, and genotype accuracy. These three metrics can be traded off against each other. Using the highly multiplexed Molecular Inversion Probe technology as an example, we describe a methodology for identifying the optimal trade-off. The methodology comprises: a robust clustering algorithm and assessment of a large number of data filter sets. The clustering algorithm allows for automatic genotype determination. Many different sets of filters are then applied to the clustered data, and performance metrics resulting from each filter set are calculated. These performance metrics relate to the power of a study and provide a framework to choose the most suitable filter set to the particular study.
Genome Research | 2005
Paul Hardenbol; Fuli Yu; John W. Belmont; Jennifer MacKenzie; Carsten Bruckner; Tiffany Brundage; Andrew Boudreau; Steve Chow; Jim Eberle; Ayca Erbilgin; Mat Falkowski; Ron Fitzgerald; Sy Ghose; Oleg Iartchouk; Maneesh Jain; George Karlin-Neumann; Xiuhua Lu; Xin Miao; Bridget Moore; Martin Moorhead; Eugeni Namsaraev; Shiran Pasternak; Eunice Prakash; Karen Tran; Zhiyong Wang; Hywel B. Jones; Ronald W. Davis; Thomas D. Willis; Richard A. Gibbs
Archive | 2001
Thomas D. Willis; Paul Hardenbol; Manheesh Jain; Viktor Stolc; Mostafa Ronaghi; Ronald W. Davis
Clinical Chemistry | 2007
Thomas M. Daly; Carmen Dumaual; Xin Miao; Mark W. Farmen; Reuben Njau; Dong-Jing Fu; Nancy L. Bauer; Sandra L Close; Nancy Watanabe; Carsten Bruckner; Paul Hardenbol; Richard D. Hockett