Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Hebeisen is active.

Publication


Featured researches published by Paul Hebeisen.


Antimicrobial Agents and Chemotherapy | 2001

In Vitro and In Vivo Properties of Ro 63-9141, a Novel Broad-Spectrum Cephalosporin with Activity against Methicillin-Resistant Staphylococci

Paul Hebeisen; Ingrid Heinze-Krauss; Peter Angehrn; Peter Hohl; Malcolm G. P. Page; Rudolf L. Then

ABSTRACT Ro 63-9141 is a new member of the pyrrolidinone-3-ylidenemethyl cephem series of cephalosporins. Its antibacterial spectrum was evaluated against significant gram-positive and gram-negative pathogens in comparison with those of reference drugs, including cefotaxime, cefepime, meropenem, and ciprofloxacin. Ro 63-9141 showed high antibacterial in vitro activity against gram-positive bacteria except ampicillin-resistant enterococci, particularly vancomycin-resistant strains of Enterococcus faecium. Its MIC at which 90% of the isolates tested were inhibited (MIC90) for methicillin-resistant Staphylococcus aureus (MRSA) was 4 μg/ml. Ro 63-9141 was bactericidal against MRSA. Development of resistance to the new compound in MRSA was not observed. Ro 63-9141 was more potent than cefotaxime against penicillin-resistant Streptococcus pneumoniae(MIC90 = 2 μg/ml). It was active against ceftazidime-susceptible strains of Pseudomonas aeruginosaand against Enterobacteriaceae except Proteus vulgaris and some isolates producing extended-spectrum β-lactamases. The basis for the antibacterial spectrum of Ro 63-9141 lies in its affinity to essential penicillin-binding proteins, including PBP 2′ of MRSA, and its stability towards β-lactamases. The in vivo findings were in accordance with the in vitro susceptibilities of the pathogens. These data suggest the potential utility of Ro 63-9141 for the therapy of infections caused by susceptible pathogens, including MRSA. Since insufficient solubility of Ro 63-9141 itself precludes parenteral administration in humans, a water-soluble prodrug, Ro 65-5788, is considered for development.


Bioorganic & Medicinal Chemistry Letters | 2008

Allosteric Fbpase Inhibitors Gain 10(5) Times in Potency When Simultaneously Binding Two Neighboring AMP Sites.

Paul Hebeisen; Bernd Kuhn; Philipp Kohler; Walter Huber; Eric Argirios Kitas; Brigitte Schott; Jörg Benz; Catherine Joseph; Armin Ruf

Human fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) is a key gluconeogenic enzyme, responsible for the hydrolysis of fructose-1,6-bisphosphate to fructose-6-phosphate, and thus presents an opportunity for the development of novel therapeutics focused on lowering the hepatic glucose production in type 2 diabetics. In its active form FBPase exists as a homotetramer and is allosterically regulated by AMP. In an HTS campaign aromatic sulfonylureas have been identified as FBPase inhibitors mimicking AMP. By bridging two adjacent allosteric binding sites using two aromatic sulfonylureas as anchor units and covalently linking them, it was possible to obtain dual binding AMP site inhibitors that exhibit a strong inhibitory effect.


Bioorganic & Medicinal Chemistry Letters | 2010

Sulfonylureido Thiazoles as Fructose-1,6-Bisphosphatase Inhibitors for the Treatment of Type-2 Diabetes.

Eric Argirios Kitas; Peter Mohr; Bernd Kuhn; Paul Hebeisen; Hans Peter Wessel; Wolfgang Haap; Armin Ruf; Jörg Benz; Catherine Joseph; Walter Huber; Ruben Alvarez Sanchez; Axel Paehler; Agnès Bénardeau; Brigitte Schott; Effie Tozzo

Sulfonylureido thiazoles were identified from a HTS campaign and optimized through a combination of structure-activity studies, X-ray crystallography and molecular modeling to yield potent inhibitors of fructose-1,6-bisphosphatase. Compound 12 showed favorable ADME properties, for example, F=70%, and a robust 32% glucose reduction in the acute db/db mouse model for Type-2 diabetes.


Chimia | 2004

5-HT 2C Receptor Agonists for the Treatment of Obesity. Biological and Chemical Adventures

David R. Adams; Agnès Bénardeau; Mike J. Bickerdike; Jon Mark Winnersh Bentley; Caterina Bissantz; Anne Bourson; Ian A. Cliffe; Paul Hebeisen; Guy A. Kennett; Antony R. Knight; Craig S. Malcolm; Jacques Mizrahi; Jean-Marc Plancher; Hans Richter; Stephan Röver; Sven Taylor; Steven P. Vickers

Obesity is a major risk factor in the development of conditions such as hypertension, hyperglycemia, dyslipidemia, coronary artery disease and cancer. There is increasing evidence suggesting an important role for the 5-HT 2 C receptor in appetite control. Collaboration between F. Hoffmann-La Roche Ltd and Vernalis Research Ltd has allowed rapid construction of a solid structure-activity relationship around a pyrroloindole core. A one-pot Sonogashira reaction followed by nucleophilic double cyclisation allows an elegant and expedient route to this central motif. Introduction of a (2S)-aminopropyl group in place of the aminoethyl endogenous ligand side-chain enhanced the affinity at the 5-HT 2 C receptor and reduced affinity towards monoamine oxidase enzymes (MAO). Sulfamidate reagents were found to be very effective for the introduction of the 2-aminopropyl moiety in a stereoselective manner. The substitution at position 5 (indole numbering) was found to be crucial for both affinity and selectivity. Pyrroloindoles bearing an alkoxyether in this position exhibit promising pharmacokinetic parameters in rodent and significant reduction of food intake, after per os application.


Journal of Medicinal Chemistry | 2013

6-Alkoxy-5-aryl-3-pyridinecarboxamides, a New Series of Bioavailable Cannabinoid Receptor Type 1 (CB1) Antagonists Including Peripherally Selective Compounds

Stephan Röver; Mirjana Andjelkovic; Agnès Bénardeau; Evelyne Chaput; Wolfgang Guba; Paul Hebeisen; Susanne Mohr; Matthias Nettekoven; Ulrike Obst; Wolfgang Richter; Christoph Ullmer; Pius Waldmeier; Matthew Blake Wright

We identified 6-alkoxy-5-aryl-3-pyridinecarboxamides as potent CB1 receptor antagonists with high selectivity over CB2 receptors. The series was optimized to reduce lipophilicity compared to rimonabant to achieve peripherally active molecules with minimal central effects. Several compounds that showed high plasma exposures in rats were evaluated in vivo to probe the contribution of central vs peripheral CB1 agonism to metabolic improvement. Both rimonabant and 14g, a potent brain penetrant CB1 receptor antagonist, significantly reduced the rate of body weight gain. However, 14h, a molecule with markedly reduced brain exposure, had no significant effect on body weight. PK studies confirmed similarly high exposure of both 14h and 14g in the periphery but 10-fold lower exposure in the brain for 14h. On the basis of these data, which are consistent with reported effects in tissue-specific CB1 receptor KO mice, we conclude that the metabolic benefits of CB1 receptor antagonists are primarily centrally mediated as originally believed.


Bioorganic & Medicinal Chemistry Letters | 2011

Orally Active Aminopyridines as Inhibitors of Tetrameric Fructose-1,6-Bisphosphatase.

Paul Hebeisen; Wolfgang Haap; Bernd Kuhn; Peter Mohr; Hans Peter Wessel; Ulrich Zutter; Stephan Kirchner; Armin Ruf; Jörg Benz; Catherine Joseph; Brigitte Schott; Agnès Bénardeau; Effie Tozzo; Eric Argirios Kitas

A novel sulfonylureido pyridine series exemplified by compound 19 yielded potent inhibitors of FBPase showing significant glucose reduction and modest glycogen lowering in the acute db/db mouse model for Type-2 diabetes. Our inhibitors occupy the allosteric binding site and also extend into the dyad interface region of tetrameric FBPase.


Journal of Medicinal Chemistry | 2017

5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology

Florent Beaufils; Natasa Cmiljanovic; Vladimir Cmiljanovic; Thomas Bohnacker; Anna Melone; Romina Marone; Eileen Jackson; Xuxiao Zhang; Alexander Sele; Chiara Borsari; Paul Hebeisen; Petra Hillmann; Bernd Giese; Marketa Zvelebil; Doriano Fabbro; Roger Williams; Denise Rageot; Matthias P. Wymann

Phosphoinositide 3-kinase (PI3K) is deregulated in a wide variety of human tumors and triggers activation of protein kinase B (PKB/Akt) and mammalian target of rapamycin (mTOR). Here we describe the preclinical characterization of compound 1 (PQR309, bimiralisib), a potent 4,6-dimorpholino-1,3,5-triazine-based pan-class I PI3K inhibitor, which targets mTOR kinase in a balanced fashion at higher concentrations. No off-target interactions were detected for 1 in a wide panel of protein kinase, enzyme, and receptor ligand assays. Moreover, 1 did not bind tubulin, which was observed for the structurally related 4 (BKM120, buparlisib). Compound 1 is orally available, crosses the blood-brain barrier, and displayed favorable pharmacokinetic parameters in mice, rats, and dogs. Compound 1 demonstrated efficiency in inhibiting proliferation in tumor cell lines and a rat xenograft model. This, together with the compounds safety profile, identifies 1 as a clinical candidate with a broad application range in oncology, including treatment of brain tumors or CNS metastasis. Compound 1 is currently in phase II clinical trials for advanced solid tumors and refractory lymphoma.


Cancer Research | 2015

Abstract 4514: PQR309: A potent, brain-penetrant, dual pan-PI3K/mTOR inhibitor with excellent oral bioavailability and tolerability

Vladimir Cmiljanovic; Robert A. Ettlin; Florent Beaufils; Walter Dieterle; Petra Hillmann; Juergen Mestan; Anna Melone; Thomas Bohnacker; Marc Lang; Natasa Cmiljanovic; Bernd Giese; Paul Hebeisen; Matthias P. Wymann; Doriano Fabbro

The phosphatidylinositol 3-kinase (PI3K) signaling pathway is frequently activated in tumors and promotes oncogenic cell transformation, proliferation and tumor growth. PQR309, a novel dual inhibitor of PI3K and mTOR, is currently in Phase I clinical development in cancer patients. PQR309 binds potently and specifically to the ATP binding pocket of all PI3K class I isoforms and mTORC1/2, attenuates PI3K signaling and inhibits tumor cell growth. The preclinical pharmacological and toxicological characterization of PQR309 is presented here. Methods: PQR309 pharmacokinetics/-dynamics (PK/PD) were investigated in rats and mice. Tissue samples from plasma, brain and liver were analyzed by LC/MS detecting PQR309 distribution as well as blood insulin and glucose. Toxicological studies were performed in rats and dogs. Effects on neurological, hematopoietic, respiratory, lymphoid, reproductive and cardiovascular system as well as general health were monitored. The metabolic fate of PQR309 was analyzed in rat, dog and human hepatocytes. Results: PQR309 PK studies in rats, mice and dogs revealed dose-proportional PK, both PO and IV, with a half-life of 5-8 hours in plasma, brain and liver, allowing for once a day oral application. As on-target effect, increase of blood insulin and glucose could be observed within hours after oral dosage in rats, which makes both molecules suitable as PD markers. In in vivo PC-3 rat tumor xenograft models, PQR309 effectively inhibited PI3K signaling in tumors and reduced tumor growth at 10 mg/kg oral dosing. Preclinical toxicity testing showed no signs of cardiotoxicity (including lack of hERG binding), phototoxicity (3T3 NRU test) or mutagenicity (AMES test) for PQR309. No marked effect on CYP450 activity was observed making PQR309 a good combination partner in cancer therapy. As for other PI3K inhibitors, PQR309 leads at elevated doses to a fully reversible loss of body weight and appetite in rats and dogs. No further significant adverse events were observed when testing PQR309 for 28 days in these species. Conclusions: PQR309 potently inhibits class I PI3K isoforms and mTORC1/2 and shows anti-tumor effects in vitro and in vivo. The physico-chemical properties of PQR309 result in good oral bioavailability and equal distribution between plasma and brain. Pre-clinical data led to initiation of a Phase I clinical study of PQR309 in solid tumors. Citation Format: Vladimir Cmiljanovic, Robert A. Ettlin, Florent Beaufils, Walter Dieterle, Petra Hillmann, Juergen Mestan, Anna Melone, Thomas Bohnacker, Marc Lang, Natasa Cmiljanovic, Bernd Giese, Paul Hebeisen, Matthias P. Wymann, Doriano Fabbro. PQR309: A potent, brain-penetrant, dual pan-PI3K/mTOR inhibitor with excellent oral bioavailability and tolerability. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 4514. doi:10.1158/1538-7445.AM2015-4514


Cancer Research | 2015

Abstract 2664: PQR309: Structure-based design, synthesis and biological evaluation of a novel, selective, dual pan-PI3K/mTOR inhibitor

Vladimir Cmiljanovic; Natasa Cmiljanovic; Romina Marone; Florent Beaufils; Xuxiao Zhang; Marketa Zvelebil; Paul Hebeisen; Marc Lang; Juergen Mestan; Anna Melone; Thomas Bohnacker; Eugenio Gaudio; Chiara Tarantelli; Francesco Bertoni; Reto Ritschard; Vincent Prêtre; Andreas Wicki; Doriano Fabbro; Petra Hillmann; Roger Williams; Bernd Giese; Matthias P. Wymann

Phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) signaling is key to the control of many physiological and pathophysiological processes, and promotes cancer and inflammatory disease. Therefore, targeting of PI3K and/or mTOR pathways is currently explored in numerous clinical studies. PQR309 is a novel, brain penetrant, potent and selective pan-PI3K/mTOR inhibitor with PK properties suitable for once a day oral dosing in humans. Structure activity relationship studies for PI3K and mTOR interactions are presented, including X-Ray analysis of PI3Kgamma co-crystal structures, modeling of PI3Kalpha and mTOR structures, and chemical derivatization. This led to the identification of PQR309 as a potent pan-PI3K and moderate mTOR inhibitor. PQR309 displays excellent selectivity versus PI3K-related lipid kinases (PIKKs) and protein kinases (KINOMEscan), as well as excellent selectivity versus unrelated targets (Cerep expresSProfile). PQR309 features excellent cell permeability, and was characterized as a BCS class II compound due to its limited water solubility (40 μM). Moreover, PQR309 is not a substrate for P-glycoprotein 1 (P-gp). In A2058 melanoma cells PQR309 demonstrated inhibition of protein kinase B (PKB/Akt; pS473) and ribosomal protein S6 (S6, pSer235/236) phosphorylation with IC50 values of 0.13 μM and 0.58 μM, respectively. In IGF-stimulated MCF7 breast cancer cells, PQR309 at 1 μM inhibited phosphorylation of downstream substrates of PI3K including PKB/Akt, S6, p70S6 kinase, GSK3 and Bad by 60-95%. PQR309 inhibited proliferation of all 58 cell lines of the NCI60 panel (GI50 from 50 to 3300 nM), of the NTRC Oncoline panel (44 cell lines, GI50 from 100-6700 nM) and of a lymphoma cell line panel (40 lymphoma cell lines, GI50 from 25-1740 nM). A concise 4-step synthetic process utilizing a novel protective group strategy provides a robust and scalable supply of PQR309 for clinical trials. In summary, PQR309 is a novel, potent, dual pan-PI3K/mTOR inhibitor with a balanced PI3K vs. mTOR profile, and displays excellent physico-chemical and pharmacological properties. The safety profile of PQR309 is currently addressed in Phase I clinical studies. Citation Format: Vladimir Cmiljanovic, Natasa Cmiljanovic, Romina Marone, Florent Beaufils, Xuxiao Zhang, Marketa Zvelebil, Paul Hebeisen, Marc Lang, Juergen Mestan, Anna Melone, Thomas Bohnacker, Eugenio Gaudio, Chiara Tarantelli, Francesco Bertoni, Reto Ritschard, Vincent Pretre, Andreas Wicki, Doriano Fabbro, Petra Hillmann, Roger Williams, Bernd Giese, Matthias P. Wymann. PQR309: Structure-based design, synthesis and biological evaluation of a novel, selective, dual pan-PI3K/mTOR inhibitor. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 2664. doi:10.1158/1538-7445.AM2015-2664


Heterocycles | 2012

ITERATIVE ONE POT REACTIONS OF A CHIRAL SULFAMIDATE WITH 2,4,6-TRICHLOROPYRIDINE: REGIOCONTROLLED SYNTHESIS OF LINEAR AND ANGULAR CHIRAL DIPYRROLIDINO PYRIDINES

Paul Hebeisen; André Alker; Markus Buerkler

The product of the ring opening of a chiral sulfamidate with the 3- lithiopyridine species obtained by deprotonation of 2,4,6-trichloropyridine with n- BuLi can be deprotonated again in situ with n-BuLi and reacted with a second equivalent of the sulfamidate furnishing a bis -aminoethyl pyridine derivative which can be cyclized regioselectively to linear or angular chiral dipyrrolidino pyridines.

Collaboration


Dive into the Paul Hebeisen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge