Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Heggelund is active.

Publication


Featured researches published by Paul Heggelund.


The Journal of Neuroscience | 2006

Synapsin Utilization Differs among Functional Classes of Synapses on Thalamocortical Cells

Anders Kielland; Alev Erisir; S. Ivar Walaas; Paul Heggelund

Several proteins in nerve terminals participate in synaptic transmission between neurons. The synapsins, which are synaptic vesicle-associated proteins, have widespread distribution in the brain and are assumed essential for sustained recruitment of vesicles during high rates of synaptic transmission. We compared the role of synapsins in two types of glutamatergic synapses on thalamocortical cells in the dorsal lateral geniculate nucleus of mice: retinogeniculate synapses, which transmit primary afferent input at high frequencies and show synaptic depression, and corticogeniculate synapses, which provide modulatory feedback at lower frequencies and show synaptic facilitation. We used electrophysiological methods to determine effects of gene knock-out of synapsin I and II on short-term synaptic plasticity in paired-pulse, pulse-train, and posttetanic potentiation paradigms. The gene inactivation changed the plasticity properties in corticogeniculate, but not in retinogeniculate, synapses. Immunostaining with antibodies against synapsins in wild-type mice demonstrated that neither synapsin I nor II occurred in retinogeniculate terminals, whereas both occurred in corticogeniculate terminals. In GABAergic terminals, only synapsin I occurred. In corticogeniculate terminals of knock-out mice, the density of synaptic vesicles was reduced because of increased terminal size rather than reduced number of vesicles and the intervesicle distance was increased compared with wild-type mice. In the retinogeniculate terminals, no significant morphometric differences occurred between knock-out and wild-type mice. Together, this indicates that synapsin I and II are not present in the retinogeniculate terminals and therefore are not essential for sustained, high-rate synaptic transmission.


The Journal of Physiology | 1994

The quantal size at retinogeniculate synapses determined from spontaneous and evoked EPSCs in guinea-pig thalamic slices.

Ole Paulsen; Paul Heggelund

1. To determine the quantal size at retinogeniculate synapses, spontaneous and evoked excitatory postsynaptic currents (EPSCs) were recorded in twelve neurones of the dorsal lateral geniculate nucleus in guinea‐pig thalamic slices using the whole‐cell patch‐clamp technique. We limited our study to the fast non‐N‐methyl‐D‐aspartate (NMDA) component of the EPSCs by adding the NMDA receptor antagonist DL‐2‐amino‐5‐phosphonovaleric acid to the perfusion medium. 2. Spontaneous EPSCs occurred at a frequency between 0.5 and 6.6 Hz (mean 2.5 Hz). The modal value of the peak conductance change of spontaneous excitatory events varied between cells from 102 to 179 pS. 3. EPSCs were evoked by electrical stimulation in the optic tract. The peak conductance change of EPSCs evoked by stimulation of a putative single input fibre ranged from 0.6 to 3.4 nS (mean 1.7 nS). 4. To resolve the quantal components of evoked EPSCs the external Ca2+ concentration was reduced and the external Mg2+ concentration increased for four cells. In this condition failures occurred and the amplitude histograms were multimodal with approximately equidistant peaks. 5. These multimodal histograms could be fitted by a sum of Gaussian functions with mean values corresponding to integer multiples of the modal value of the spontaneous EPSCs for the same cell. Thus, the quantal size of evoked EPSCs was the same as the modal value of spontaneous EPSCs. The mean of the apparent quantal conductance change was 138 pS. The estimated number of quanta released by stimulating a putative single input fibre in the control condition ranged from 4 to 27 (mean 13).(ABSTRACT TRUNCATED AT 250 WORDS)


Experimental Brain Research | 1977

The depth distribution of optimal stimulus orientations for neurones in cat area 17

B.B. Lee; K. Albus; Paul Heggelund; M.J. Hulme; O. D. Creutzfeldt

SummaryNeurones recorded during penetrations through cat area 17 as near parallel to the radial fibre bundles as possible have been quantitatively tested as to their optimal orientation. Optimal orientation within any one penetration was similar though considerable variability was observed. Histological reconstruction and other considerations showed that this variability could not be attributed to poor penetration angle or limitations of the microelectrode technique. These results confirm that neurones with similar optimal orientations are found in all cortical layers at one cortical locus, but it is difficult to reconcile the variability observed with a mosaic-like distribution of orientation across the cortical surface. The findings are consistent, however, with the assumption of a continuous distribution of orientation sensitivity across the cortical surface with considerable superimposed scatter.


Neuron | 2009

Activity Patterns Govern Synapse-Specific AMPA Receptor Trafficking between Deliverable and Synaptic Pools

Anders Kielland; Genrieta Bochorishvili; James Corson; Lei Zhang; Diane L. Rosin; Paul Heggelund; J. Julius Zhu

In single neurons, glutamatergic synapses receiving distinct afferent inputs may contain AMPA receptors (-Rs) with unique subunit compositions. However, the cellular mechanisms by which differential receptor transport achieves this synaptic diversity remain poorly understood. In lateral geniculate neurons, we show that retinogeniculate and corticogeniculate synapses have distinct AMPA-R subunit compositions. Under basal conditions at both synapses, GluR1-containing AMPA-Rs are transported from an anatomically defined reserve pool to a deliverable pool near the postsynaptic density (PSD), but further incorporate into the PSD or functional synaptic pool only at retinogeniculate synapses. Vision-dependent activity, stimulation mimicking retinal input, or activation of CaMKII or Ras signaling regulated forward GluR1 trafficking from the deliverable pool to the synaptic pool at both synapses, whereas Rap2 signals reverse GluR1 transport at retinogeniculate synapses. These findings suggest that synapse-specific AMPA-R delivery involves constitutive and activity-regulated transport steps between morphological pools, a mechanism that may extend to the site-specific delivery of other membrane protein complexes.


Visual Neuroscience | 2000

Spatial summation and center-surround antagonism in the receptive field of single units in the dorsal lateral geniculate nucleus of cat: comparison with retinal input.

O. Ruksenas; I.T. Fjeld; Paul Heggelund

Spatial summation and degree of center-surround antagonism were examined in the receptive field of nonlagged cells in the dorsal lateral geniculate nucleus (dLGN). We recorded responses to stationary light or dark circular spots that were stepwise varied in width. The spots were centered on the receptive field. For a sample of nonlagged X-cells, we made simultaneous recordings of action potentials and S-potentials, and could thereby compare spatial summation in the dLGN cell and in the retinal input to the cell. Plots of response versus spot diameter showed that the response for a dLGN cell was consistently below the response in the retinal input at all spot sizes. There was a marked increase of antagonism at the retinogeniculate relay. The difference between the retinal input and dLGN cell response suggested that the direct retinal input to a relay cell is counteracted in dLGN by an inhibitory field that has an antagonistic center-surround organization. The inhibitory field seems to have the same center sign (ON- or OFF-center), but a wider receptive-field center than the direct retinal input to the relay cell. The broader center of the inhibitory field can explain the increased center-surround antagonism at the retinogeniculate relay. The ratio between the response of a dLGN cell and its retinal input (transfer ratio) varied with spot width. This variation did not necessarily reflect a nonlinearity at the retinogeniculate relay. Plots of dLGN cell response against retinal input were piecewise linear, suggesting that both excitatory and inhibitory transmission in dLGN are close to linear. The variation in transfer ratio could be explained by sustained suppression evoked by the background stimulation, because such suppression has relatively stronger effect on the response to a spot evoking weak response than to a spot evoking a strong response. A simple model for the spatial receptive-field organization of nonlagged X-cells, that is consistent with our findings, is presented.


Epilepsy & Behavior | 2009

Seizure elements and seizure element transitions during tonic-clonic seizure activity in the synapsin I/II double knockout mouse: a neuroethological description.

Lars Etholm; Paul Heggelund

Inactivation of genes for the synaptic terminal proteins synapsin I and synapsin II leads to development of epileptic seizures in mice (Syn-DKO mice) in which no other behavioral abnormalities or any gross anatomical brain deformities have been reported. In humans, mutated synapsin I is associated with epilepsy. Thus, the Syn-DKO mouse might model human seizure development. Here we describe a neuroethological analysis of behavioral elements and relationships between these elements during seizures in Syn-DKO mice. The seizure elements belong to one of three clusters each characterized by specific patterns of activity: truncus-dominated elements, myoclonic elements, and running-fit activity. The first two clusters, constituting the majority of seizural activity, evolve quite differently during ongoing seizure activity. Whereas truncus-dominated elements unfold in a strict sequence, the myoclonic elements wax and wane more independently, once myoclonic activity has started. These differences may point to neurobiological mechanisms relevant to both rodent and human epilepsies.


The Journal of Physiology | 1996

Quantal properties of spontaneous EPSCs in neurones of the guinea‐pig dorsal lateral geniculate nucleus.

Ole Paulsen; Paul Heggelund

1. Spontaneous non‐NMDA glutamate receptor‐mediated EPSCs were recorded with the whole‐cell patch‐clamp technique from twenty‐six neurones in the dorsal lateral geniculate nucleus in thalamic slices from guinea‐pig. 2. Amplitude distributions of the EPSCs were skewed towards larger values. The skewness could be accounted for by multiquantal properties. The multiquantal properties were most clearly demonstrated in four cells that had prominent peaks in the amplitude distribution, and peak separation approximately corresponding to the modal value. The amplitude distribution for all cells could be adequately fitted by a quantal model consisting of a sum of Gaussians with means equal to integer multiples of a quantal unit. The variance of each Gaussian was equal to the sum of the noise variance of the recordings and an additional non‐negative variance which increased linearly with the number of the Gaussian in the series. The estimated mean quantal size was 152 +/‐ 37 pS. The estimated mean quantal coefficient of variation was 15%. Addition of tetrodotoxin did not significantly change any of the quantal parameters (n = 5). 3. The waveform of the EPSCs was similar for small and large events, and similar to that of events evoked by stimulation of retinal input fibres. There was a positive correlation between peak amplitude and rise time. This is the opposite of that expected if differences in electrotonic distances were to explain differences in amplitude. 4. The spontaneous EPSCs occurred randomly at an average frequency of 3.1 Hz. The events with amplitudes approximately equal to multiples of the quantal size were, in most cells, more numerous than could be accounted for by coincidence of randomly occurring events of quantal size. 5. The results indicate that spontaneous EPSCs can reflect more than a single quantum, and suggest that quantal events may be coupled due to action potential‐independent near‐synchronous multiquantal release of transmitter.


Neuroscience | 1997

ROLES OF N-METHYL-d-ASPARTATE RECEPTORS IN OCULAR DOMINANCE PLASTICITY IN DEVELOPING VISUAL CORTEX: RE-EVALUATION

T. Kasamatsu; Kazuyuki Imamura; N Mataga; Espen Hartveit; U Heggelund; Paul Heggelund

We have re-examined whether N-methyl-D-aspartate receptors play a specific role in experience-dependent plasticity in kitten visual cortex. A specific antagonist of this glutamate receptor subtype, D,L-2-amino-5-phosphonovaleric acid, was directly and continuously infused into kitten striate cortex for one week concurrently with monocular lid suture. In the hemisphere infused with 50 mM antagonist, we found the usual shift in ocular dominance toward the open eye with only a few binocular cells remaining. The changes were accompanied by an extremely high incidence (38%) of abnormal cells lacking orientation selectivity across different ocular dominance groups. In kitten cortex infused with 10 mM antagonist concurrently with monocular deprivation for a week, recording from a drug-affected region near the infusion centre, we again found the U-shaped ocular dominance distribution with the high incidence of non-selective cells. In antagonist-infused, otherwise normal striate cortex of adult cats, we found that the proportion of binocular cells decreased by one-half in two cellular populations: one recorded during the continuous infusion of 10 mM antagonist under general anaesthesia and paralysis, and the other about two days after stopping the infusion. We also established that in vivo concentrations of chronically infused 10 mM antagonist decreased, not near-exponentially, but linearly with increasing distance from the infusion site. Thus, the effects of a directly and continuously infused, concentrated antagonist of N-methyl-D-aspartate receptors on receptive-field properties of visuocortical cells are complex. The present findings strongly suggest that the antagonist effects in the developing cortex may be due primarily to blockade of normal synaptic transmission rather than specific disruption of an experience-dependent mechanism underlying ocular dominance plasticity.


The Journal of Physiology | 2007

Changes in firing pattern of lateral geniculate neurons caused by membrane potential dependent modulation of retinal input through NMDA receptors

Sigita Augustinaite; Paul Heggelund

An optimal visual stimulus flashed on the receptive field of a retinal ganglion cell typically evokes a strong transient response followed by weaker sustained firing. Thalamocortical (TC) neurons in the dorsal lateral geniculate nucleus, which receive their sensory input from retina, respond similarly except that the gain, in particular of the sustained component, changes with level of arousal. Several lines of evidence suggest that retinal input to TC neurons through NMDA receptors plays a key role in generation of the sustained response, but the mechanisms for the state‐dependent variation in this component are unclear. We used a slice preparation to study responses of TC neurons evoked by trains of electrical pulses to the retinal afferents at frequencies in the range of visual responses in vivo. Despite synaptic depression, the pharmacologically isolated NMDA component gave a pronounced build‐up of depolarization through temporal summation of the NMDA receptor mediated EPSPs. This depolarization could provide sustained firing, the frequency of which depended on the holding potential. We suggest that the variation of sustained response in vivo is caused mainly by the state‐dependent modulation of the membrane potential of TC neurons which shifts the NMDA receptor mediated depolarization closer to or further away from the firing threshold. The pharmacologically isolated AMPA receptor EPSPs were rather ineffective in spike generation. However, together with the depolarization evoked by the NMDA component, the AMPA component contributed significantly to spike generation, and was necessary for the precise timing of the generated spikes.


Visual Neuroscience | 2000

Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat

Gaute T. Einevoll; Paul Heggelund

Spatial receptive fields of relay cells in dorsal lateral geniculate nucleus (dLGN) have commonly been modeled as a difference of two Gaussian functions. We present alternative models for dLGN cells which take known physiological couplings between retina and dLGN and within dLGN into account. The models include excitatory input from a single retinal ganglion cell and feedforward inhibition via intrageniculate interneurons. Mathematical formulas describing the receptive field and response to circular spot stimuli are found both for models with a finite and an infinite number of ganglion-cell inputs to dLGN neurons. The advantage of these models compared to the common difference-of-Gaussians model is that they, in addition to providing mathematical descriptions of the receptive fields of dLGN neurons, also make explicit contributions from the geniculate circuit. Moreover, the model parameters have direct physiological relevance and can be manipulated and measured experimentally. The discrete model is applied to recently published data (Ruksenas et al., 2000) on response versus spot-diameter curves for dLGN cells and for the retinal input to the cell (S-potentials). The models are found to account well for the results for the X-cells in these experiments. Moreover, predictions from the discrete model regarding receptive-field sizes of interneurons, the amount of center-surround antagonism for interneurons compared to relay cells, and distance between neighboring retinal ganglion cells providing input to interneurons, are all compatible with data available in the literature.

Collaboration


Dive into the Paul Heggelund's collaboration.

Top Co-Authors

Avatar

Gaute T. Einevoll

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geir Halnes

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge