Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Hines is active.

Publication


Featured researches published by Paul Hines.


Chaos | 2010

Do topological models provide good information about electricity infrastructure vulnerability

Paul Hines; Eduardo Cotilla-Sanchez; Seth Blumsack

In order to identify the extent to which results from topological graph models are useful for modeling vulnerability in electricity infrastructure, we measure the susceptibility of power networks to random failures and directed attacks using three measures of vulnerability: characteristic path lengths, connectivity loss, and blackout sizes. The first two are purely topological metrics. The blackout size calculation results from a model of cascading failure in power networks. Testing the response of 40 areas within the Eastern U.S. power grid and a standard IEEE test case to a variety of attack/failure vectors indicates that directed attacks result in larger failures using all three vulnerability measures, but the attack-vectors that appear to cause the most damage depend on the measure chosen. While the topological metrics and the power grid model show some similar trends, the vulnerability metrics for individual simulations show only a mild correlation. We conclude that evaluating vulnerability in power networks using purely topological metrics can be misleading.


IEEE Transactions on Power Systems | 2012

Risk Assessment of Cascading Outages: Methodologies and Challenges

Marianna Vaiman; Keith Bell; Yousu Chen; Badrul H. Chowdhury; Ian Dobson; Paul Hines; Milorad Papic; Stephen S. Miller; Pei Zhang

Cascading outages can cause large blackouts, and a variety of methods are emerging to study this challenging topic. The Task Force on Understanding, Prediction, Mitigation, and Restoration of Cascading Failures, under the IEEE PES Computer Analytical Methods Subcommittee (CAMS), seeks to consolidate and review the progress of the field towards methods and tools of assessing the risk of cascading failure. This paper discusses the challenges of cascading failure and summarizes a variety of state-of-the-art analysis and simulation methods, including analyzing observed data, and simulations relying on various probabilistic, deterministic, approximate, and heuristic approaches. Limitations to the interpretation and application of analytical results are highlighted, and directions and challenges for future developments are discussed.


hawaii international conference on system sciences | 2010

Modeling the Impact of Increasing PHEV Loads on the Distribution Infrastructure

Chris Farmer; Paul Hines; Jonathan Dowds; Seth Blumsack

Numerous recent reports have assessed the adequacy of current generating capacity to meet the growing electricity demand from Plug-in Hybrid Electric Vehicles (PHEVs) and the potential for using these vehicles to provide grid support (Vehicle to Grid, V2G) services. However, little has been written on how these new loads will affect the medium and low-voltage distribution infrastructure. This paper briefly reviews the results of the existing PHEV studies and describes a new model: the PHEV distribution circuit impact model (PDCIM). PDCIM allows one to estimate the impact of an increasing number of PHEVs (or pure electric vehicles) on transformers and underground cables within a medium voltage distribution system. We describe the details of this model and results from its application to a distribution circuit in Vermont.


IEEE Systems Journal | 2012

Comparing the Topological and Electrical Structure of the North American Electric Power Infrastructure

Eduardo Cotilla-Sanchez; Paul Hines; Clayton Barrows; Seth Blumsack

The topological (graph) structure of complex networks often provides valuable information about the performance and vulnerability of the network. However, there are multiple ways to represent a given network as a graph. Electric power transmission and distribution networks have a topological structure that is straightforward to represent and analyze as a graph. However, simple graph models neglect the comprehensive connections between components that result from Ohms and Kirchhoffs laws. This paper describes the structure of the three North American electric power interconnections, from the perspective of both topological and electrical connectivity. We compare the simple topology of these networks with that of random, preferential-attachment, and small-world networks of equivalent sizes and find that power grids differ substantially from these abstract models in degree distribution, clustering, diameter and assortativity, and thus conclude that these topological forms may be misleading as models of power systems. To study the electrical connectivity of power systems, we propose a new method for representing electrical structure using electrical distances rather than geographic connections. Comparisons of these two representations of the North American power networks reveal notable differences between the electrical and topological structures of electric power networks.


hawaii international conference on system sciences | 2010

The Topological and Electrical Structure of Power Grids

Paul Hines; Seth Blumsack; E. Cotilla Sanchez; Clayton Barrows

Numerous recent papers have found important relationships between network structure and risks within networks. These results indicate that network structure can dramatically affect the relative effectiveness of risk identification and mitigation methods. With this in mind this paper provides a comparative analysis of the topological and electrical structure of the IEEE 300 bus and the Eastern United States power grids. Specifically we compare the topology of these grids with that of random [1], preferential-attachment [2] and small-world [3] networks of equivalent sizes and find that power grids differ substantially from these abstract models in degree distribution, clustering, diameter and assortativity, and thus conclude that these abstract models do not provide substantial utility for modeling power grids. To better represent the topological properties of power grids we introduce a new graph generating algorithm, the minimum distance graph, that produces networks with properties that more nearly match those of known power grids. While these topological comparisons are useful, they do not account for the physical laws that govern flows in electricity networks. To elucidate the electrical structure of power grids, we propose a new method for representing electrical structure as a weighted graph. This analogous representation is based on electrical distance rather than topological connections. A comparison of these two representations of the test power grids reveals dramatic differences between the electrical and topological structure of electrical power systems.


IEEE Transactions on Smart Grid | 2013

Estimating the Impact of Electric Vehicle Smart Charging on Distribution Transformer Aging

Alexander D. Hilshey; Paul Hines; Pooya Rezaei; Jonathan Dowds

This paper describes a method for estimating the impact of plug-in electric vehicle (PEV) charging on overhead distribution transformers, based on detailed travel demand data and under several different schemes for mitigating overloads by shifting PEV charging times (smart charging). The paper also presents a new smart charging algorithm that manages PEV charging based on estimated transformer temperatures. We simulated the varied behavior of drivers from the 2009 National Household Transportation Survey, and transformer temperatures based an IEEE standard dynamic thermal model. Results are shown for Monte Carlo simulation of a 25 kVA overhead distribution transformer, with ambient temperature data from hot and cold climate locations, for uncontrolled and several smart-charging scenarios. These results illustrate the substantial impact of ambient temperatures on distribution transformer aging, and indicate that temperature-based smart charging can dramatically reduce both the mean and variance in transformer aging without substantially reducing the frequency with which PEVs obtain a full charge. Finally, the results indicate that simple smart charging schemes, such as delaying charging until after midnight can actually increase, rather than decrease, transformer aging.


IEEE Transactions on Power Systems | 2012

A “Random Chemistry” Algorithm for Identifying Collections of Multiple Contingencies That Initiate Cascading Failure

Margaret J. Eppstein; Paul Hines

This paper describes a stochastic “Random Chemistry” (RC) algorithm to identify large collections of multiple (n-k) contingencies that initiate large cascading failures in a simulated power system. The method requires only O(log (n)) simulations per contingency identified, which is orders of magnitude faster than random search of this combinatorial space. We applied the method to a model of cascading failure in a power network with n=2896 branches and identify 148243 unique, minimal n-k branch contingencies (2 ≤ k ≤ 5) that cause large cascades, many of which would be missed by using pre-contingency flows, linearized line outage distribution factors, or performance indices as screening factors. Within each n-k collection, the frequency with which individual branches appear follows a power-law (or nearly so) distribution, indicating that a relatively small number of components contribute disproportionately to system vulnerability. The paper discusses various ways that RC generated collections of dangerous contingencies could be used in power systems planning and operations.


IEEE Transactions on Power Systems | 2013

Multi-Attribute Partitioning of Power Networks Based on Electrical Distance

Eduardo Cotilla-Sanchez; Paul Hines; Clayton Barrows; Seth Blumsack; Mahendra Patel

Identifying coherent sub-graphs in networks is important in many applications. In power systems, large systems are divided into areas and zones to aid in planning and control applications. But not every partitioning is equally good for all applications; different applications have different goals, or attributes, against which solutions should be evaluated. This paper presents a hybrid method that combines a conventional graph partitioning algorithm with an evolutionary algorithm to partition a power network to optimize a multi-attribute objective function based on electrical distances, cluster sizes, the number of clusters, and cluster connectedness. Results for the IEEE RTS-96 show that clusters produced by this method can be used to identify buses with dynamically coherent voltage angles, without the need for dynamic simulation. Application of the method to the IEEE 118-bus and a 2383-bus case indicates that when a network is well partitioned into zones, intra-zone transactions have less impact on power flows outside of the zone; i.e., good partitioning reduces loop flows. This property is particularly useful for power system applications where ensuring deliverability is important, such as transmission planning or determination of synchronous reserve zones.


power and energy society general meeting | 2008

Long-term electric system investments to support Plug-in Hybrid Electric Vehicles

Seth Blumsack; Constantine Samaras; Paul Hines

Plug-in hybrid electric vehicles (PHEV) represent a promising pathway to reduce greenhouse gas emissions associated with the U.S. transportation sector. A large-scale shift from gasoline-powered automobiles to PHEVs would inextricably link the U.S. transportation system with its electric system. We build on [4] to perform a regional emissions analysis of a PHEV use pattern where PHEVs are charged at night and discharged during the day. We find that in some coal-intensive regions like the Midwest, charging PHEVs by burning coal may produce more emissions than burning gasoline. Overnight charging of PHEVs will deteriorate the system load factor by increasing off-peak demand. This may have deleterious effects on system infrastructure. We perform some simple simulations looking at the effect of off-peak PHEV charging on the performance of oil-cooled substation transformers.


power and energy society general meeting | 2008

Trends in the history of large blackouts in the United States

Paul Hines; Jay Apt; Sarosh N. Talukdar

Despite efforts to mitigate blackout risk, the data available from the North American Electric Reliability Council (NERC) for 1984-2006 indicate that the frequency of large blackouts in the United States is not decreasing. This paper describes the data and methods used to come to this conclusion and several other patterns that appear in the data. These patterns have important implications for those who make investment and policy decisions in the electricity industry. Several example calculations show how these patterns can significantly affect the decision-making process.

Collaboration


Dive into the Paul Hines's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seth Blumsack

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clayton Barrows

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge