Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Hunt is active.

Publication


Featured researches published by Paul Hunt.


The Journal of Infectious Diseases | 2001

High-Level Chloroquine Resistance in Sudanese Isolates of Plasmodium falciparum Is Associated with Mutations in the Chloroquine Resistance Transporter Gene pfcrt and the Multidrug Resistance Gene pfmdr1

Hamza A. Babiker; S. J. Pringle; Abdel-Muhsin Abdel-Muhsin; Margaret J. Mackinnon; Paul Hunt; David Walliker

Polymorphisms were examined in 2 Plasmodium falciparum genes, as were chloroquine responses of clones and isolates from a village in eastern Sudan. There was a significant association between an allele of the P. falciparum chloroquine resistance transporter gene (pfcrt-T76) and both in vitro and in vivo resistance. There was a less significant association with the multidrug resistance gene pfmdr1-Y86 allele. A significant association between pfmdr1-Y86 and pfcrt-T76 was apparent among resistant isolates, which suggests a joint action of the 2 genes in high-level chloroquine resistance.


Antimicrobial Agents and Chemotherapy | 2006

Malaria Parasites Can Develop Stable Resistance to Artemisinin but Lack Mutations in Candidate Genes atp6 (Encoding the Sarcoplasmic and Endoplasmic Reticulum Ca2+ ATPase), tctp, mdr1, and cg10

Ana Afonso; Paul Hunt; Sandra Cheesman; Ana Catarina Alves; Celso Cunha; V. E. Do Rosario; Pedro Cravo

ABSTRACT Resistance of Plasmodium falciparum to drugs such as chloroquine and sulfadoxine-pyrimethamine is a major problem in malaria control. Artemisinin (ART) derivatives, particularly in combination with other drugs, are thus increasingly used to treat malaria, reducing the probability that parasites resistant to the components will emerge. Although stable resistance to artemisinin has yet to be reported from laboratory or field studies, its emergence would be disastrous because of the lack of alternative treatments. Here, we report for the first time, to our knowledge, genetically stable and transmissible ART and artesunate (ATN)-resistant malaria parasites. Each of two lines of the rodent malaria parasite Plosmodium chabaudi chabaudi, grown in the presence of increasing concentrations of ART or ATN, showed 15-fold and 6-fold increased resistance to ART and ATN, respectively. Resistance remained stable after cloning, freeze-thawing, after passage in the absence of drug, and transmission through mosquitoes. The nucleotide sequences of the possible genetic modulators of ART resistance (mdr1, cg10, tctp, and atp6) of sensitive and resistant parasites were compared. No mutations in these genes were identified. In addition we investigated whether changes in the copy number of these genes could account for resistance but found that resistant parasites retained the same number of copies as their sensitive progenitors. We believe that this is the first report of a malaria parasite with genetically stable and transmissible resistance to artemisinin or its derivatives.


Molecular Microbiology | 2007

Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites

Paul Hunt; Ana Afonso; Alison M. Creasey; Richard Culleton; Amar Bir Singh Sidhu; John G Logan; Stephanie G. Valderramos; Iain W. McNae; Sandra Cheesman; Virgílio E. do Rosário; Richard Carter; David A. Fidock; Pedro Cravo

Artemisinin‐ and artesunate‐resistant Plasmodium chabaudi mutants, AS‐ART and AS‐ATN, were previously selected from chloroquine‐resistant clones AS‐30CQ and AS‐15CQ respectively. Now, a genetic cross between AS‐ART and the artemisinin‐sensitive clone AJ has been analysed by Linkage Group Selection. A genetic linkage group on chromosome 2 was selected under artemisinin treatment. Within this locus, we identified two different mutations in a gene encoding a deubiquitinating enzyme. A distinct mutation occurred in each of the clones AS‐30CQ and AS‐ATN, relative to their respective progenitors in the AS lineage. The mutations occurred independently in different clones under drug selection with chloroquine (high concentration) or artesunate. Each mutation maps to a critical residue in a homologous human deubiquitinating protein structure. Although one mutation could theoretically account for the resistance of AS‐ATN to artemisinin derivates, the other cannot account solely for the resistance of AS‐ART, relative to the responses of its sensitive progenitor AS‐30CQ. Two lines of Plasmodium falciparum with decreased susceptibility to artemisinin were also selected. Their drug‐response phenotype was not genetically stable. No mutations in the UBP‐1 gene encoding the P.u2003falciparum orthologue of the deubiquitinating enzyme were observed. The possible significance of these mutations in parasite responses to chloroquine or artemisinin is discussed.


BMC Genomics | 2010

Experimental evolution, genetic analysis and genome re-sequencing reveal the mutation conferring artemisinin resistance in an isogenic lineage of malaria parasites

Paul Hunt; Axel Martinelli; Katarzyna Modrzynska; Sofia T. Borges; Alison M. Creasey; Louise Rodrigues; Dario Beraldi; Laurence Loewe; Richard Fawcett; Sujai Kumar; Marian Thomson; Urmi Trivedi; Thomas D. Otto; Arnab Pain; Mark Blaxter; Pedro Cravo

BackgroundClassical and quantitative linkage analyses of genetic crosses have traditionally been used to map genes of interest, such as those conferring chloroquine or quinine resistance in malaria parasites. Next-generation sequencing technologies now present the possibility of determining genome-wide genetic variation at single base-pair resolution. Here, we combine in vivo experimental evolution, a rapid genetic strategy and whole genome re-sequencing to identify the precise genetic basis of artemisinin resistance in a lineage of the rodent malaria parasite, Plasmodium chabaudi. Such genetic markers will further the investigation of resistance and its control in natural infections of the human malaria, P. falciparum.ResultsA lineage of isogenic in vivo drug-selected mutant P. chabaudi parasites was investigated. By measuring the artemisinin responses of these clones, the appearance of an in vivo artemisinin resistance phenotype within the lineage was defined. The underlying genetic locus was mapped to a region of chromosome 2 by Linkage Group Selection in two different genetic crosses. Whole-genome deep coverage short-read re-sequencing (Illumina® Solexa) defined the point mutations, insertions, deletions and copy-number variations arising in the lineage. Eight point mutations arise within the mutant lineage, only one of which appears on chromosome 2. This missense mutation arises contemporaneously with artemisinin resistance and maps to a gene encoding a de-ubiquitinating enzyme.ConclusionsThis integrated approach facilitates the rapid identification of mutations conferring selectable phenotypes, without prior knowledge of biological and molecular mechanisms. For malaria, this model can identify candidate genes before resistant parasites are commonly observed in natural human malaria populations.


Infection, Genetics and Evolution | 2012

Comparative genome analysis of two Cryptosporidium parvum isolates with different host range

Giovanni Widmer; Yongsun Lee; Paul Hunt; Axel Martinelli; Max Tolkoff; Kip Bodi

Parasites of the genus Cryptosporidium infect the intestinal and gastric epithelium of different vertebrate species. Some of the many Cryptosporidium species described to date differ with respect to host range; whereas some species host range appears to be narrow, others have been isolated from taxonomically unrelated vertebrates. To begin to investigate the genetic basis of Cryptosporidium host specificity, the genome of a Cryptosporidium parvum isolate belonging to a sub-specific group found exclusively in humans was sequenced and compared to the reference C. parvum genome representative of the zoonotic group. Over 12,000 single-nucleotide polymorphisms (SNPs), or 1.4 SNP per kilobase, were identified. The genome distribution of SNPs was highly heterogeneous, but non-synonymous and silent SNPs were similarly distributed. On many chromosomes, the most highly divergent regions were located near the ends. Genes in the most diverged regions were almost twice as large as the genome-wide average. Transporters, and ABC transporters in particular, were over-represented among these genes, as were proteins with predicted signal peptide. Possibly reflecting the presence of regulatory sequences, the distribution of intergenic SNPs differed according to the function of the downstream open reading frame. A 3-way comparison of the newly sequenced anthroponotic C. parvum, the reference zoonotic C. parvum and the human parasite Cryptosporidium hominis identified genetic loci where the anthroponotic C. parvum sequence is more similar to C. hominis than to the zoonotic C. parvum reference. Because C. hominis and anthroponotic C. parvum share a similar host range, this unexpected observation suggests that proteins encoded by these genes may influence the host range.


Antimicrobial Agents and Chemotherapy | 2003

Genetics of Mefloquine Resistance in the Rodent Malaria Parasite Plasmodium chabaudi

Pedro Cravo; Jane M. Carlton; Paul Hunt; Laura Bisoni; Rose Ann Padua; David Walliker

ABSTRACT The genetic determinants of resistance to mefloquine in malaria parasites are unclear. Some studies have implied that amplification of, or mutations in, the multidrug resistance gene pfmdr1 in Plasmodium falciparum may be involved. Using the rodent malaria model Plasmodium chabaudi, we investigated the role of the orthologue of this gene, pcmdr1, in a stable mefloquine-resistant mutant, AS(15MF/3), selected from a sensitive clone. pcmdr1 exists as a single copy gene on chromosome 12 of the sensitive clone. In AS(15MF/3), the gene was found to have undergone duplication, with one copy translocating to chromosome 4. mRNA levels of pcmdr1 were higher in the mutant than in the parent sensitive clone. A partial genetic map of the translocation showed that other genes in addition to pcmdr1 had been cotranslocated. The sequences of both copies of pcmdr1 of AS(15MF/3) were identical to that of the parent sensitive clone. A cross was made between AS(15MF/3) and an unrelated mefloquine-sensitive clone, AJ. Phenotypic and molecular analysis of progeny clones showed that duplication and overexpression of the pcmdr1 gene was an important determinant of resistance. However, not all mefloquine-resistant progeny contained the duplicated gene, showing that at least one other gene was involved in resistance.


Molecular and Biochemical Parasitology | 2002

Numerous, robust genetic markers for Plasmodium chabaudi by the method of amplified fragment length polymorphism

Katrina Grech; Axel Martinelli; Sisira Pathirana; David Walliker; Paul Hunt; Richard Carter

We have used the method of amplified fragment length polymorphism (AFLP) to identify genetic polymorphisms between two cloned isolates of the rodent malaria parasite Plasmodium chabaudi chabaudi. The method employs polymerase chain reaction (PCR)-amplification of genomic DNA fragments cut with specific combinations of restriction endonucleases; we used EcoRI and Tru1I (isoschizomer of MseI). We have identified 819 parasite clone-specific AFLPs between P. c. chabaudi clones AS and AJ. Of these, 403 fragments were specific to AS and 416 to AJ. In preparing blood stage parasites for DNA, nucleated host cells were removed by successive filtration of infected blood through powdered cellulose and Plasmodipur filters. This reduced nucleated host cell contamination to around 1-10 per million parasite nuclei and reduced host DNA to below the limit of detection by the AFLP method. Analysis of our results showed that the total number of PCR-amplified fragments of parasite DNA was consistent with the predicted number of EcoRI sites in the parasite genome. 19.4% of all amplified fragments were P. c. chabaudi clone-specific. From this figure we estimated that the diversity between clones AS and AJ, measured as the probability of a sequence difference, was between about 8 x 10(-3) and 4.6 x 10(-4) per base pair. This is consistent with the sequence diversity found between alleles of candidate drug resistance genes from P. c. chabaudi clones AS and AJ identified and sequenced in this laboratory.


Antimicrobial Agents and Chemotherapy | 2001

Antimalarial Drugs Clear Resistant Parasites from Partially Immune Hosts

Pedro Cravo; Richard Culleton; Paul Hunt; David Walliker; Margaret J. Mackinnon

ABSTRACT Circumstantial evidence in human malaria suggests that elimination of parasites by drug treatment meets higher success rates in individuals having some background immunity. In this study, using the rodent malaria model Plasmodium chabaudi, we show that drug-resistant parasites can be cleared by drugs when the host is partially immune.


Malaria Journal | 2005

An AFLP-based genetic linkage map of Plasmodium chabaudi chabaudi

Axel Martinelli; Paul Hunt; Richard Fawcett; Pedro Vl Cravo; David Walliker; Richard Carter

BackgroundPlasmodium chabaudi chabaudi can be considered as a rodent model of human malaria parasites in the genetic analysis of important characters such as drug resistance and immunity. Despite the availability of some genome sequence data, an extensive genetic linkage map is needed for mapping the genes involved in certain traits.MethodsThe inheritance of 672 Amplified Fragment Length Polymorphism (AFLP) markers from two parental clones (AS and AJ) of P. c. chabaudi was determined in 28 independent recombinant progeny clones. These, AFLP markers and 42 previously mapped Restriction Fragment Length Polymorphism (RFLP) markers (used as chromosomal anchors) were organized into linkage groups using Map Manager software.Results614 AFLP markers formed linkage groups assigned to 10 of 14 chromosomes, and 12 other linkage groups not assigned to known chromosomes. The genetic length of the genome was estimated to be about 1676 centiMorgans (cM). The mean map unit size was estimated to be 13.7 kb/cM. This was slightly less then previous estimates for the human malaria parasite, Plasmodium falciparumConclusionThe P. c. chabaudi genetic linkage map presented here is the most extensive and highly resolved so far available for this species. It can be used in conjunction with the genome databases of P. c chabaudi, P. falciparum and Plasmodium yoelii to identify genes underlying important phenotypes such as drug resistance and strain-specific immunity.


Antimicrobial Agents and Chemotherapy | 2011

Genomewide scan reveals amplification of mdr1 as a common denominator of resistance to mefloquine, lumefantrine, and artemisinin in Plasmodium chabaudi malaria parasites.

Sofia T. Borges; Pedro Cravo; Alison M. Creasey; Richard Fawcett; Katarzyna Modrzynska; Louise Rodrigues; Axel Martinelli; Paul Hunt

ABSTRACT Multidrug-resistant Plasmodium falciparum malaria parasites pose a threat to effective drug control, even to artemisinin-based combination therapies (ACTs). Here we used linkage group selection and Solexa whole-genome resequencing to investigate the genetic basis of resistance to component drugs of ACTs. Using the rodent malaria parasite P. chabaudi, we analyzed the uncloned progeny of a genetic backcross between the mefloquine-, lumefantrine-, and artemisinin-resistant mutant AS-15MF and a genetically distinct sensitive clone, AJ, following drug treatment. Genomewide scans of selection showed that parasites surviving each drug treatment bore a duplication of a segment of chromosome 12 (translocated to chromosome 04) present in AS-15MF. Whole-genome resequencing identified the size of the duplicated segment and its position on chromosome 4. The duplicated fragment extends for ∼393 kbp and contains over 100 genes, including mdr1, encoding the multidrug resistance P-glycoprotein homologue 1. We therefore show that resistance to chemically distinct components of ACTs is mediated by the same genetic mutation, highlighting a possible limitation of these therapies.

Collaboration


Dive into the Paul Hunt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Cravo

Universidade Federal de Goiás

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louise Rodrigues

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Sofia T. Borges

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge