Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Baker is active.

Publication


Featured researches published by Paul J. Baker.


Biology of Reproduction | 2002

Changes in Leydig Cell Gene Expression During Development in the Mouse

Peter J. O'Shaughnessy; L. Willerton; Paul J. Baker

Abstract Developmental changes in the expression of 18 Leydig cell-specific mRNA species were measured by real-time polymerase chain reaction to partially characterize the developmental phenotype of the cells in the mouse and to identify markers of adult Leydig cell differentiation. Testicular interstitial webs were isolated from mice between birth and adulthood. Five developmental patterns of gene expression were observed. Group 1 contained mRNA species encoding P450 side chain cleavage (P450scc), P450c17, relaxin-like factor (RLF), glutathione S-transferase 5-5 (GST5-5), StAR protein, LH receptor, and epoxide hydrolase (EH); group 2 contained 3β-hydroxysteroid dehydrogenase (3β-HSD) VI, 17β-hydroxysteroid dehydrogenase (17β-HSD) III, vascular cell adhesion molecule 1, estrogen sulfotransferase, and prostaglandin D (PGD)-synthetase; group 3 contained patched and thrombospondin 2 (TSP2); group 4 contained 5α-reductase 1 and 3α-hydroxysteroid dehydrogenase; group 5 contained sulfonylurea receptor 2 and 3β-HSD I. Group 1 contained genes that were expressed in fetal and adult Leydig cells and which increased in expression around puberty toward a maximum in the adult. Group 2 contained genes expressed only in the adult Leydig cell population. Group 3 contained genes with predominant fetal/neonatal expression in the interstitial tissue. Group 4 contained genes with a peak of expression around puberty, whereas genes in group 5 show little developmental change in expression. Highest mRNA levels in descending order were RLF, P450c17, EH, 17β-HSD III, PGD-synthetase, GST5-5, and P450scc. Results identify five genes expressed in the mouse adult Leydig cell population, but not in the fetal population, and one gene (TSP2) that may be expressed only in the fetal Leydig cell population. The developmental pattern of gene expression suggests that three distinct phases of adult Leydig cell differentiation occur.


Biology of Reproduction | 2006

Molecular Evidence That Growth of Dominant Follicles Involves a Reduction in Follicle-Stimulating Hormone Dependence and an Increase in Luteinizing Hormone Dependence in Cattle

M. Mihm; Paul J. Baker; J.L.H. Ireland; George W. Smith; Paul M. Coussens; A.C.O. Evans; James J. Ireland

Abstract The bovine dominant follicle (DF) model was used to identify molecular mechanisms potentially involved in initial growth of DF during the low FSH milieu of ovarian follicular waves. Follicular fluid and RNA from granulosa and theca cells were harvested from 10 individual DF obtained between 2 and 5.5 days after emergence of the first follicular wave of the estrous cycle. Follicular fluid was subjected to RIA to determine estradiol (E) and progesterone (P) concentrations and RNA to cDNA microarray analysis and (or) quantitative real-time PCR. Results showed that DF growth was associated with a decrease in intrafollicular E:P ratio and in mRNA for the FSH receptor, estrogen receptor 2 (ER beta), inhibin alpha, activin A receptor type I, and a proliferation (cyclin D2) and two proapoptotic factors (apoptosis regulatory protein Siva, Fas [TNFRSF6]-associated via death domain) in granulosa cells. In contrast, mRNAs for the LH receptor in granulosa cells and for two antiapoptotic factors (TGFB1-induced antiapoptotic factor 1, LAG1 longevity assurance homolog 4 [Saccharomyces cerevisiae]) and one proapoptotic factor (tumor necrosis factor [ligand] superfamily, member 8) were increased in theca cells. We conclude that the bovine DF provides a unique model to identify novel genes potentially involved in survival and apoptosis of follicular cells and, importantly, to determine the FSH-, estradiol-, and LH-target genes regulating its growth and function. Results provide new molecular evidence for the hypothesis that DF experience a reduction in FSH dependence but acquire increased LH dependence as they grow during the low FSH milieu of follicular waves.


Endocrinology | 2008

Spermatogenesis and Sertoli cell activity in mice lacking Sertoli cell receptors for follicle stimulating hormone and androgen

Margaret H. Abel; Paul J. Baker; Harry M. Charlton; Ana Monteiro; Guido Verhoeven; K. De Gendt; Florian Guillou; Peter J. O'Shaughnessy

Spermatogenesis in the adult male depends on the action of FSH and androgen. Ablation of either hormone has deleterious effects on Sertoli cell function and the progression of germ cells through spermatogenesis. In this study we generated mice lacking both FSH receptors (FSHRKO) and androgen receptors on the Sertoli cell (SCARKO) to examine how FSH and androgen combine to regulate Sertoli cell function and spermatogenesis. Sertoli cell number in FSHRKO-SCARKO mice was reduced by about 50% but was not significantly different from FSHRKO mice. In contrast, total germ cell number in FSHRKO-SCARKO mice was reduced to 2% of control mice (and 20% of SCARKO mice) due to a failure to progress beyond early meiosis. Measurement of Sertoli cell-specific transcript levels showed that about a third were independent of hormonal action on the Sertoli cell, whereas others were predominantly androgen dependent or showed redundant control by FSH and androgen. Results show that FSH and androgen act through redundant, additive, and synergistic regulation of spermatogenesis and Sertoli cell activity. In addition, the Sertoli cell retains a significant capacity for activity, which is independent of direct hormonal regulation.


Molecular and Cellular Endocrinology | 2009

Role of androgen and gonadotrophins in the development and function of the Sertoli cells and Leydig cells: Data from mutant and genetically modified mice

Peter J. O'Shaughnessy; Ian D. Morris; Ilpo Huhtaniemi; Paul J. Baker; Margaret H. Abel

Development and maintenance of the male phenotype and establishment of fertility are all dependent upon the activity of the Sertoli cells and Leydig cells of the testis. This review examines the regulation and function of these cell during fetal and post-natal development. Fetal Leydig cells are sensitive to both luteinising hormone (LH) and adrenocorticotrophic hormone (ACTH) but Leydig cell function appears normal in fetal mice lacking both hormones or their receptors. Post-natally, the Sertoli cells and Leydig cells are reliant upon the pituitary gonadotrophins. Leydig cells are critically dependent on LH but follicle-stimulating hormone (FSH), presumably acting through the Sertoli cell, can also affect Leydig cell function. Testosterone secreted by the Leydig cells acts with FSH to stimulate Sertoli cell activity and spermatogenesis. Study of animals lacking FSH-receptors and androgen-receptors shows that both hormones can act to maintain the meiotic germ cell population but that androgens are critical for completion of meiosis.


Reproduction | 2008

Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells

Peter J. O'Shaughnessy; Liangbiao Hu; Paul J. Baker

It has been shown that testicular germ cell development is critically dependent upon somatic cell activity but, conversely, the extent to which germ cells normally regulate somatic cell function is less clear. This study was designed, therefore, to examine the effect of germ cell depletion on Sertoli cell and Leydig cell transcript levels. Mice were treated with busulphan to deplete the germ cell population and levels of mRNA transcripts encoding 26 Sertoli cell-specific proteins and 6 Leydig cell proteins were measured by real-time PCR up to 50 days after treatment. Spermatogonia were lost from the testis between 5 and 10 days after treatment, while spermatocytes were depleted after 10 days and spermatids after 20 days. By 30 days after treatment, most tubules were devoid of germ cells. Circulating FSH and intratesticular testosterone were not significantly affected by treatment. Of the 26 Sertoli cell markers tested, 13 showed no change in transcript levels after busulphan treatment, 2 showed decreased levels, 9 showed increased levels and 2 showed a biphasic response. In 60% of cases, changes in transcript levels occurred after the loss of the spermatids. Levels of mRNA transcripts encoding Leydig cell-specific products related to steroidogenesis were unaffected by treatment. Results indicate (1) that germ cells play a major and widespread role in the regulation of Sertoli cell activity, (2) most changes in transcript levels are associated with the loss of spermatids and (3) Leydig cell steroidogenesis is largely unaffected by germ cell ablation.


Reproduction | 2008

Differentiation of the bovine dominant follicle from the cohort upregulates mRNA expression for new tissue development genes.

M. Mihm; Paul J. Baker; Lynne M. Fleming; Ana Monteiro; Peter J. O'Shaughnessy

This study was designed to identify genes that regulate the transition from FSH- to LH-dependent development in the bovine dominant follicle (DF). Serial analysis of gene expression (SAGE) was used to compare the transcriptome of granulosa cells isolated from the most oestrogenic growing cohort follicle (COH), the newly selected DF and its largest subordinate follicle (SF) which is destined for atresia. Follicle diameter, follicular fluid oestradiol (E) and E:progesterone ratio confirmed follicle identity. Results show that there are 93 transcript species differentially expressed in DF granulosa cells, but only 8 of these encode proteins known to be involved in DF development. Most characterised transcripts upregulated in the DF are from tissue development genes that regulate cell differentiation, proliferation, apoptosis, signalling and tissue remodelling. Semiquantitative real-time PCR analysis confirmed seven genes with upregulated (P< or =0.05) mRNA expression in DF compared with both COH and SF granulosa cells. Thus, the new genes identified by SAGE and real-time PCR, which show enhanced mRNA expression in the DF, may regulate proliferation (cyclin D2; CCND2), prevention of apoptosis or DNA damage (growth arrest and DNA damage-inducible, beta; GADD45B), RNA synthesis (splicing factor, arginine/serine rich 9; SFRS9) and unknown processes associated with enhanced steroidogenesis (ovary-specific acidic protein; DQ004742) in granulosa cells of DF at the onset of LH-dependent development. Further studies are required to show whether the expression of identified genes is dysregulated when abnormalities occur during DF selection or subsequent development.


Biology of Reproduction | 2003

Identification of Developmentally Regulated Genes in the Somatic Cells of the Mouse Testis Using Serial Analysis of Gene Expression

Peter J. O'Shaughnessy; Lynne M. Fleming; Paul J. Baker; G. Jackson; Heather M. Johnston

Abstract To identify genes developmentally regulated in the somatic cells of the testis, serial analysis of gene expression (SAGE) has been used to generate gene expression profiles from these cells in the fetal and adult mouse. To avoid germ cell transcripts, a fetal SAGE library was generated from germ cell-free fetal Wv/Wv mice, and an adult SAGE library was generated from adult testes depleted of germ cells with busulfan. The combined SAGE libraries contained 147 570 tags identifying 12 976 unique transcripts. Of these transcripts, 3607 were present in only the fetal library and 3941 were present in only the adult library. Most of the abundant differentially expressed tags in the adult testis library were from characterized genes, whereas 3′ rapid amplification of complementary ends was required to identify most differentially expressed tags in the fetal library. These fetal tags were mostly associated with uncharacterized UniGene clusters. These data provide a comprehensive and quantitative analysis of gene expression in the somatic cells of the fetal and adult testis (including unknown transcripts) and identify genes differentially expressed in these cells during testis development. These differentially regulated genes are likely to provide insight into mechanisms regulating testis function both during development and in the adult animal.


The Journal of Clinical Endocrinology and Metabolism | 2009

Gene expression analysis of human fetal ovarian primordial follicle formation.

Paul A. Fowler; Samantha Flannigan; Anna Mathers; Kim Gillanders; Richard G. Lea; Maureen Wood; Abha Maheshwari; Siladitya Bhattacharya; Elaina Collie-Duguid; Paul J. Baker; Ana Monteiro; Peter J. O'Shaughnessy

CONTEXT Primordial follicle formation dictates the maximal potential female reproductive capacity and establishes the ovarian reserve. Currently, little is known about this process in the human. OBJECTIVE The aim of the study was to identify genes associated with the onset of human fetal primordial follicle formation in morphologically normal human fetuses. DESIGN We conducted an observational study of the female fetal gonad, comparing gene expression before and during primordial follicle formation. SETTING The study was conducted at the Universities of Aberdeen, Glasgow, and Nottingham. PATIENTS/PARTICIPANTS Ovaries were collected from 51 morphologically normal human female fetuses of women undergoing elective termination of normal second trimester pregnancies. MAIN OUTCOME MEASURES We performed fetal ovarian transcript expression by Affymetrix array and quantitative RT-PCR and gene product expression and localization by Western blot and immunohistochemistry. RESULTS Five transcripts were down-regulated and 61 were up-regulated in ovaries from older fetuses (18-20 wk) in which primordial follicle formation had started compared with younger (15-16 wk) fetuses in which no primordial follicles were observed. The altered genes contribute to major functions, including gene expression, tissue morphology, and apoptosis, that are essential for ovarian development. NALP5, the most highly regulated transcript, is an oocyte-specific maternal effect gene that is regulated downstream of FIGLA. CONCLUSIONS NALP5 probably plays a key role in the onset of human primordial follicle formation and thus the establishment of ovarian reserve in women.


Reproductive Biology and Endocrinology | 2003

Differentiation of adult-type Leydig cells occurs in gonadotrophin-deficient mice

Paul J. Baker; Heather M. Johnston; Margaret H. Abel; Harry M. Charlton; Peter J. O'Shaughnessy

During mammalian testis development distinct generations of fetal and adult Leydig cells arise. Luteinising hormone (LH) is required for normal adult Leydig cell function and for the establishment of normal adult Leydig cell number but its role in the process of adult Leydig cell differentiation has remained uncertain. In this study we have examined adult Leydig cell differentiation in gonadotrophin-releasing hormone (GnRH)-null mice which are deficient in circulating gonadotrophins. Adult Leydig cell differentiation was assessed by measuring expression of mRNA species encoding four specific markers of adult Leydig cell differentiation in the mouse. Each of these markers (3β-hydroxysteroid dehydrogenase type VI (3βHSD VI), 17β-hydroxysteroid dehydrogenase type III (17βHSD III), prostaglandin D (PGD)-synthetase and oestrogen sulphotransferase (EST)) is expressed only in the adult Leydig cell lineage in the normal adult animal. Real-time PCR studies showed that all four markers are expressed in adult GnRH-null mice. Localisation of 3βHSD VI and PGD-synthetase expression by in situ hybridisation confirmed that these genes are expressed in the interstitial tissue of the GnRH-null mouse. Treatment of animals with human chorionic gonadotrophin increased expression of 3βHSD VI and 17βHSD III within 12 hours further indicating that differentiated, but unstimulated cells already exist in the GnRH-null mouse. Thus, while previous studies have shown that LH is required for adult Leydig cell proliferation and activity, results from the present study show that adult Leydig cell differentiation will take place in animals deficient in LH.


Reproduction | 2008

Leydig cell re-generation and expression of cell signaling molecules in the germ cell-free testis

Peter J. O'Shaughnessy; Ian D. Morris; Paul J. Baker

Leydig cells in the rat testis can be specifically ablated with ethane dimethane sulfonate (EDS) and will subsequently re-generate. In this study, we have characterized Leydig cell re-generation and expression of selected cell-signaling molecules in a germ cell-free model of EDS action. This model offers the advantage that re-generation occurs on a stable background without confounding changes from the regressing and repopulating germ cell population. Adult rats were treated with busulfan to remove the germ cell population and Leydig cells were then ablated with EDS. Testicular testosterone levels declined markedly within 24 h of EDS treatment and started to recover after 8 days. After EDS treatment there were marked declines in levels of Leydig cell-specific mRNA transcripts coding for steroidogenic enzymes cytochrome P450 11a1 (Cyp11a1), cytochrome P450 17a1 (Cyp17a1), 3beta-hydroxysteroid dehydrogenase type 1 (Hsd3b1), 17beta-hydroxysteroid dehydrogenase type 3 (Hsd17b3) and the LH receptor. Levels of all transcripts recovered within 20 days of EDS treatment apart from Hsd17b3, which remained undetectable up to 20 days. Immunohistochemical localization of CYP11A1 during the phase of early Leydig cell re-generation showed that the Leydig cell precursors are spindle-shaped peritubular cells. Studies on factors which may be involved in Leydig cell re-generation showed there were significant but transient increases in platelet-derived growth factor A (Pdgfa), leukemia inhibitory factor (Lif), and neurofilament heavy polypeptide (Nefh) after EDS, while desert hedgehog (Dhh) levels declined sharply but recovered by 3 days. This study shows that the Leydig cell precursors are peritubular cells and that expression of Pdgfa and Lif is increased at the start of the re-generation process when precursor proliferation is likely to be taking place.

Collaboration


Dive into the Paul J. Baker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Mihm

University of Glasgow

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge