Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Cockle is active.

Publication


Featured researches published by Paul J. Cockle.


Infection and Immunity | 2002

Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis

H. Martin Vordermeier; Mark A. Chambers; Paul J. Cockle; Adam O. Whelan; Jennifer Simmons; R. Glyn Hewinson

ABSTRACT Vaccine development and the understanding of the pathology of bovine tuberculosis in cattle would be greatly facilitated by the definition of immunological correlates of protection and/or pathology. To address these questions, cattle were vaccinated with Mycobacterium bovis bacillus Calmette-Guérin (BCG) and were then challenged with virulent M. bovis. Applying a semiquantitative pathology-scoring system, we were able to demonstrate that BCG vaccination imparted significant protection by reducing the disease severity on average by 75%. Analysis of cellular immune responses following M. bovis challenge demonstrated that proliferative T-cell and gamma interferon (IFN-γ) responses towards the M. bovis-specific antigen ESAT-6, whose gene is absent from BCG, were generally low in vaccinated animals but were high in all nonvaccinated calves. Importantly, the amount of ESAT-6-specific IFN-γ measured by enzyme-linked immunosorbent assay after M. bovis challenge, but not the frequency of responding cells, correlated positively with the degree of pathology found 18 weeks after infection. Diagnostic reagents based on antigens not present in BCG, like ESAT-6 and CFP-10, were still able to distinguish BCG-vaccinated, diseased animals from BCG-vaccinated animals without signs of disease. In summary, our results suggest that the determination of ESAT-6-specific IFN-γ, while not a direct correlate of protection, constitutes nevertheless a useful prognostic immunological marker predicting both vaccine efficacy and disease severity.


Clinical and Vaccine Immunology | 2001

Use of Synthetic Peptides Derived from the Antigens ESAT-6 and CFP-10 for Differential Diagnosis of Bovine Tuberculosis in Cattle

H. M. Vordermeier; Adam O. Whelan; Paul J. Cockle; L. Farrant; N. Palmer; R. G. Hewinson

ABSTRACT In Great Britain an independent scientific review for the government has concluded that the development of a cattle vaccine against Mycobacterium bovis infection holds the best long-term prospect for tuberculosis control in British herds. A precondition for vaccination is the development of a complementary diagnostic test to differentiate between vaccinated animals and those infected with M. bovis so that testing and slaughter-based control strategies can continue alongside vaccination. To date bacillus Calmette-Guérin (BCG), an attenuated strain ofM. bovis, is the only available vaccine for the prevention of tuberculosis. However, tests based on tuberculin purified protein derivative cannot distinguish between M. bovisinfection and BCG vaccination. Therefore, specific antigens expressed by M. bovis but absent from BCG constitute prime candidates for differential diagnostic reagents. Recently, two such antigens, ESAT-6 and CFP-10, have been reported to be promising candidates as diagnostic reagents for the detection of M. bovis infection in cattle. Here we report the identification of promiscuous peptides of CFP-10 that were recognized by M. bovis-infected cattle. Five of these peptides were formulated into a peptide cocktail together with five peptides derived from ESAT-6. Using this peptide cocktail in T-cell assays, M. bovis-infected animals were detected, while BCG-vaccinated orMycobacterium avium-sensitized animals did not respond. The sensitivity of the peptide cocktail as an antigen in a whole-blood gamma interferon assay was determined using naturally infected field reactor cattle, and the specificity was determined using blood from BCG-vaccinated and noninfected, nonvaccinated animals. The sensitivity of the assay in cattle with confirmed tuberculosis was found to be 77.9%, with a specificity of 100% in BCG-vaccinated or nonvaccinated animals. This compares favorably with the specificity of tuberculin when tested in noninfected or vaccinated animals. In summary, our results demonstrate that this peptide cocktail can discriminate betweenM. bovis infection and BCG vaccination with a high degree of sensitivity and specificity.


Infection and Immunity | 2009

Viral booster vaccines improve Mycobacterium bovis BCG-induced protection against bovine tuberculosis.

H. Martin Vordermeier; Bernardo Villarreal-Ramos; Paul J. Cockle; Martin McAulay; Shelley Rhodes; Tyler C. Thacker; Sarah C. Gilbert; Helen McShane; Adrian V. S. Hill; Zhou Xing; R. Glyn Hewinson

ABSTRACT Previous work with small-animal laboratory models of tuberculosis has shown that vaccination strategies based on heterologous prime-boost protocols using Mycobacterium bovis bacillus Calmette-Guérin (BCG) to prime and modified vaccinia virus Ankara strain (MVA85A) or recombinant attenuated adenoviruses (Ad85A) expressing the mycobacterial antigen Ag85A to boost may increase the protective efficacy of BCG. Here we report the first efficacy data on using these vaccines in cattle, a natural target species of tuberculous infection. Protection was determined by measuring development of disease as an end point after M. bovis challenge. Either Ad85A or MVA85A boosting resulted in protection superior to that given by BCG alone: boosting BCG with MVA85A or Ad85A induced significant reduction in pathology in four/eight parameters assessed, while BCG vaccination alone did so in only one parameter studied. Protection was particularly evident in the lungs of vaccinated animals (median lung scores for naïve and BCG-, BCG/MVA85A-, and BCG/Ad85A-vaccinated animals were 10.5, 5, 2.5, and 0, respectively). The bacterial loads in lymph node tissues were also reduced after viral boosting of BCG-vaccinated calves compared to those in BCG-only-vaccinated animals. Analysis of vaccine-induced immunity identified memory responses measured by cultured enzyme-linked immunospot assay as well as in vitro interleukin-17 production as predictors of vaccination success, as both responses, measured before challenge, correlated positively with the degree of protection. Therefore, this study provides evidence of improved protection against tuberculosis by viral booster vaccination in a natural target species and has prioritized potential correlates of vaccine efficacy for further evaluation. These findings also have implications for human tuberculosis vaccine development.


Infection and Immunity | 2002

Identification of Novel Mycobacterium tuberculosis Antigens with Potential as Diagnostic Reagents or Subunit Vaccine Candidates by Comparative Genomics

Paul J. Cockle; Stephen V. Gordon; A. Lalvani; R. G. Hewinson; H. M. Vordermeier

ABSTRACT An independent review for the British government has concluded that the development of a cattle vaccine against Mycobacterium bovis holds the best long-term prospects for tuberculosis control in British herds. The development of complementary diagnostic tests to differentiate between vaccinated and infected animals is necessary to allow the continuation of test-and-slaughter-based control policies alongside vaccination. Vaccination with M. bovis bacillus Calmette-Guérin (BCG), the only available vaccine, results in tuberculin purified protein derivative sensitivity and has shown varying vaccine efficacies in cattle. Thus, identification of more-specific reagents to distinguish between vaccination and infection, as well as the identification of subunit vaccine candidates for improved tuberculosis vaccines, is a research priority. In the present study, we applied comparative genomics to identify M. bovis-Mycobacterium tuberculosis antigens whose genes had been deleted in BCG Pasteur. In total, 13 open reading frames (ORFs) from the RD1, RD2, and RD14 regions of the M. tuberculosis genome were selected. Pools of overlapping peptides spanning these ORFs were tested in M. bovis-infected (n = 22), BCG-vaccinated (n = 6), and unvaccinated (n = 10) control cattle. All were recognized in infected cattle, with responder frequencies varying between 16 and 86%. In particular, eight highly immunogenic antigens were identified whose potentials as diagnostic reagents or as subunit vaccines warrant further study (Rv1983, Rv1986, Rv3872, Rv3873, Rv3878, Rv3879c, Rv1979c, and Rv1769).


Infection and Immunity | 2003

A DNA prime-Mycobacterium bovis BCG boost vaccination strategy for cattle induces protection against bovine tuberculosis.

Margot A. Skinner; D. Neil Wedlock; Denise L. Keen; Geoffrey W. de Lisle; Ricardo E. Tascon; Jose Candido Ferraz; Douglas B. Lowrie; Paul J. Cockle; H. Martin Vordermeier; R. Glyn Hewinson

ABSTRACT The variable efficacy of bacillus Calmette-Guérin (Mycobacterium bovis BCG) in protecting humans and cattle against tuberculosis has prompted a search for a more effective vaccination regimen. A prime-boost strategy was investigated in cattle naturally sensitized to environmental mycobacteria by using a combination of three DNA vaccines coding for Hsp 65, Hsp 70, and Apa for priming, followed by a boost with BCG prior to experimental challenge with virulent M. bovis. Controls were vaccinated with DNA or BCG alone or were not vaccinated. The immune responses were monitored throughout the study, and protection was assessed based on reductions in the numbers of lesions and viable mycobacteria in lymph node samples. Vaccination with BCG alone or with a DNA prime-BCG boost regimen induced high levels of antigen-specific gamma interferon (IFN-γ) in whole-blood cultures. In the prime-boost group there were fewer animals with severe lung lesions, fewer lymph nodes with lesions per animal, a smaller proportion of animals with lesions, lower mean lung and lymph node lesion scores, and less M. bovis isolated from retropharyngeal and thoracic lymph nodes compared to the results obtained for the nonvaccinated animals. The prime-boost regimen induced significant enhancement of protection in six parameters, compared with significant enhancement of protection in only two parameters for BCG alone. In addition, following challenge, in vitro IFN-γ responses against ESAT-6 and CFP-10, as well as bovine tuberculin-induced skin test and in vitro IFN-γ responses, were identified as immunological markers that predicted protection. The use of the prime-boost strategy suggested that a combination of vaccines may be better than a single vaccine for protection against tuberculosis.


Infection and Immunity | 2004

Evaluation of T-Cell Responses to Novel RD1- and RD2-Encoded Mycobacterium tuberculosis Gene Products for Specific Detection of Human Tuberculosis Infection

Xiaoqing Liu; Davinder P. S. Dosanjh; Hansa Varia; Katie Ewer; Paul J. Cockle; Geoffrey Pasvol; Ajit Lalvani

ABSTRACT The tuberculin skin test for diagnosing Mycobacterium tuberculosis infection suffers from antigenic cross-reactivity of purified protein derivative with BCG, resulting in poor specificity in BCG-vaccinated populations. Comparative genomics has identified several genetic regions in M. tuberculosis and M. bovis that are deleted in M. bovis BCG. Proteins encoded in these regions will form the basis of new specific T-cell-based blood tests that do not cross-react with BCG, but only two, early secretory antigen target 6 and culture filtrate protein 10, have been studied in detail in humans. We investigated four novel gene products, encoded by RD2 (Rv1989c) and RD1 (Rv3873, Rv3878, and Rv3879c), that are absent from most or all of the vaccine strains of BCG, respectively. Sixty-seven overlapping peptides were tested in ex vivo gamma interferon enzyme-linked immunospot assays in 49 patients with culture-confirmed tuberculosis and 38 healthy BCG-vaccinated donors. Forty-five percent (95% confidence interval [CI], 31 to 57%) and 53% (95% CI, 39 to 67%) of the tuberculosis patients responded to Rv3879c and Rv3873, respectively, identifying these proteins as major M. tuberculosis T-cell antigens in humans, while 35 and 25% of the patients responded to Rv3878 and Rv1989c, respectively. Of the 38 BCG-vaccinated donors, 1 (2.6%) responded to peptides from Rv3878 and Rv3879c, 3 (7.9%) responded to Rv3873, and none responded to Rv1989c. Exclusion of cross-reactive peptides encoded in conserved motifs of Rv3873, a PPE family member, increased its specificity to 97.4%. The high specificity of Rv3879c peptides and nonconserved Rv3873 sequences, together with their moderate sensitivity in tuberculosis patients, identifies these peptides as candidates for inclusion in new T-cell-based tests for M. tuberculosis infection.


Infection and Immunity | 2004

Cell Envelope Protein PPE68 Contributes to Mycobacterium tuberculosis RD1 Immunogenicity Independently of a 10-Kilodalton Culture Filtrate Protein and ESAT-6

Caroline Demangel; Priscille Brodin; Paul J. Cockle; Roland Brosch; Laleh Majlessi; Claude Leclerc; Stewart T. Cole

ABSTRACT The protective efficacy of Mycobacterium bovis BCG can be markedly augmented by stable integration of Mycobacterium tuberculosis genomic region RD1. BCG complemented with RD1 (BCG::RD1) encodes nine additional proteins. Among them, 10-kDa culture filtrate protein (CFP-10) and ESAT-6 (6-kDa early secreted antigenic target) are low-molecular-weight proteins that induce potent Th1 responses. Using pools of synthetic peptides, we have examined the potential immunogenicity of four other RD1 products (PE35, PPE68, Rv3878, and Rv3879c). PPE68, the protein encoded by rv3873, was the only one to elicit gamma interferon (IFN-γ)-producing cells in C57BL/6 mice infected with M. tuberculosis. Anti-PPE68 T cells were predominantly raised against an epitope mapped in the N-terminal end of the protein. Importantly, inactivation of rv3873 in BCG::RD1 did not modify CFP-10 and ESAT-6 secretion. Moreover, the generation of IFN-γ responses to these antigens following immunization with BCG::RD1 was independent of PPE68 expression. Taken together, these results show that PPE68 is an immunogenic product of the RD1 region, which does not interfere with the secretion and immunogenicity of CFP-10 and ESAT-6.


Infection and Immunity | 2005

Minimum Infective Dose of Mycobacterium bovis in Cattle

Gillian Dean; Shelley Rhodes; M. Coad; Adam O. Whelan; Paul J. Cockle; Derek Clifford; R. Glyn Hewinson; H. Martin Vordermeier

ABSTRACT The aim of this work was to determine the minimum infective dose of Mycobacterium bovis necessary to stimulate specific immune responses and generate pathology in cattle. Four groups of calves (20 animals) were infected by the intratracheal route with 1,000, 100, 10, or 1 CFU of M. bovis. Specific immune responses (gamma interferon [IFN-γ] and interleukin-4 [IL-4] responses) to mycobacterial antigens were monitored throughout the study, and the responses to the tuberculin skin test were assessed at two times. Rigorous post mortem examinations were performed to determine the presence of pathology, and samples were taken for microbiological and histopathological confirmation of M. bovis infection. One-half of the animals infected with 1 CFU of M. bovis developed pulmonary pathology typical of bovine tuberculosis. No differences in the severity of pathology were observed for the different M. bovis doses. All animals that developed pathology were skin test positive and produced specific IFN-γ and IL-4 responses. No differences in the sizes of the skin test reactions, the times taken to achieve a positive IFN-γ result, or the levels of the IFN-γ and IL-4 responses were observed for the different M. bovis doses, suggesting that diagnostic assays (tuberculin skin test and IFN-γ test) can detect cattle soon after M. bovis infection regardless of the dose. This information should be useful in modeling the dynamics of bovine tuberculosis in cattle and in assessing the risk of transmission.


Vaccine | 2000

Effective DNA vaccination of cattle with the mycobacterial antigens MPB83 and MPB70 does not compromise the specificity of the comparative intradermal tuberculin skin test

H. M. Vordermeier; Paul J. Cockle; Adam O. Whelan; Shelley Rhodes; Mark A. Chambers; Derek Clifford; Kris Huygen; Ricardo E. Tascon; Douglas B. Lowrie; M. J. Colston; R. G. Hewinson

The current tuberculin test and slaughter strategy for the control of bovine tuberculosis in cattle has failed to prevent a sharp rise in cases over recent years, especially in the south-west of England. A recent scientific review has concluded that the development of a cattle vaccine holds the best prospect for tuberculosis control in British herds. In order to continue with test and slaughter-based control strategies, the development of TB vaccines that do not compromise the specificity of the tuberculin skin test are required. This report describes results of cattle vaccination experiments with TB DNA vaccines expressing the mycobacterial antigens MPB70, MPB83, and Ag85A and constitutes the first published vaccination study with DNA vaccines undertaken in a target host species. All calves vaccinated with the MPB83 expressing plasmid demonstrated potent cellular immune responses, characterised by CD4(+) T cells producing interferon-gamma as well as humoral immunity characterised by IgG1 biased specific antibodies. Vaccination with MPB70 was less effective with immune responses only observed in half of the vaccinated animals, while vaccination with Ag85A did not result in vaccine-induced immune responses. Intramuscular vaccination was found to stimulate stronger cellular responses than intradermal immunisation. Significantly, the specificity of tuberculin skin testing was not compromised by DNA vaccination since none of the vaccinated calves showed positive skin test reactivity.


Clinical and Vaccine Immunology | 2006

Field evaluation of a novel differential diagnostic reagent for detection of Mycobacterium bovis in cattle.

Paul J. Cockle; Stephen V. Gordon; R. G. Hewinson; H. M. Vordermeier

ABSTRACT In the search for improved tools with which to control bovine tuberculosis, the development of enhanced immunodiagnostic reagents is a high priority. Such reagents are required to improve the performance of tuberculin-based reagents and allow the discrimination of vaccinated cattle from those infected with Mycobacterium bovis. In this study, we identified the immunodominant, frequently recognized peptides from Rv3873, Rv3879c, Rv0288, and Rv3019c, which, together with peptides comprising the current lead diagnostic antigens, ESAT-6 and CFP-10, were formulated into a peptide cocktail. In a test of naturally infected cattle, this cocktail was significantly better than tuberculin was for identifying skin test-negative animals with confirmed bovine tuberculosis. In addition, the specificity of this cocktail was not compromised by Mycobacterium bovis BCG vaccination. In summary, our results prioritize this peptide-based, fully synthetic reagent for assessment in larger trials.

Collaboration


Dive into the Paul J. Cockle's collaboration.

Top Co-Authors

Avatar

R. Glyn Hewinson

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar

Adam O. Whelan

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar

H. Martin Vordermeier

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar

R. G. Hewinson

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar

H. M. Vordermeier

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar

Shelley Rhodes

Veterinary Laboratories Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Chambers

Animal and Plant Health Agency

View shared research outputs
Top Co-Authors

Avatar

Martin Vordermeier

Veterinary Laboratories Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge