Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul J. Coffer is active.

Publication


Featured researches published by Paul J. Coffer.


Nature | 2002

Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress

Geert J. P. L. Kops; Tobias B. Dansen; Paulien E. Polderman; Ingrid Saarloos; Karel W. A. Wirtz; Paul J. Coffer; Ting-T. Huang; Johannes L. Bos; René H. Medema; Boudewijn M.T. Burgering

Reactive oxygen species are required for cell proliferation but can also induce apoptosis. In proliferating cells this paradox is solved by the activation of protein kinase B (PKB; also known as c-Akt), which protects cells from apoptosis. By contrast, it is unknown how quiescent cells that lack PKB activity are protected against cell death induced by reactive oxygen species. Here we show that the PKB-regulated Forkhead transcription factor FOXO3a (also known as FKHR-L1) protects quiescent cells from oxidative stress by directly increasing their quantities of manganese superoxide dismutase (MnSOD) messenger RNA and protein. This increase in protection from reactive oxygen species antagonizes apoptosis caused by glucose deprivation. In quiescent cells that lack the protective mechanism of PKB-mediated signalling, an alternative mechanism is induced as a consequence of PKB inactivity. This mechanism entails the activation of Forkhead transcription factors, the transcriptional activation of MnSOD and the subsequent reduction of reactive oxygen species. Increased resistance to oxidative stress is associated with longevity. The model of Forkhead involvement in regulating longevity stems from genetic analysis in Caenorhabditis elegans, and we conclude that this model also extends to mammalian systems.


Nature | 2013

Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation

Nicholas Arpaia; Clarissa Campbell; Xiying Fan; Stanislav Dikiy; Joris van der Veeken; Paul deRoos; Hui Liu; Justin R. Cross; Klaus Pfeffer; Paul J. Coffer; Alexander Y. Rudensky

Intestinal microbes provide multicellular hosts with nutrients and confer resistance to infection. The delicate balance between pro- and anti-inflammatory mechanisms, essential for gut immune homeostasis, is affected by the composition of the commensal microbial community. Regulatory T cells (Treg cells) expressing transcription factor Foxp3 have a key role in limiting inflammatory responses in the intestine. Although specific members of the commensal microbial community have been found to potentiate the generation of anti-inflammatory Treg or pro-inflammatory T helper 17 (TH17) cells, the molecular cues driving this process remain elusive. Considering the vital metabolic function afforded by commensal microorganisms, we reasoned that their metabolic by-products are sensed by cells of the immune system and affect the balance between pro- and anti-inflammatory cells. We tested this hypothesis by exploring the effect of microbial metabolites on the generation of anti-inflammatory Treg cells. We found that in mice a short-chain fatty acid (SCFA), butyrate, produced by commensal microorganisms during starch fermentation, facilitated extrathymic generation of Treg cells. A boost in Treg-cell numbers after provision of butyrate was due to potentiation of extrathymic differentiation of Treg cells, as the observed phenomenon was dependent on intronic enhancer CNS1 (conserved non-coding sequence 1), essential for extrathymic but dispensable for thymic Treg-cell differentiation. In addition to butyrate, de novo Treg-cell generation in the periphery was potentiated by propionate, another SCFA of microbial origin capable of histone deacetylase (HDAC) inhibition, but not acetate, which lacks this HDAC-inhibitory activity. Our results suggest that bacterial metabolites mediate communication between the commensal microbiota and the immune system, affecting the balance between pro- and anti-inflammatory mechanisms.


Current Biology | 2000

Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1

Pascale F. Dijkers; René H. Medema; Jan-Willem J. Lammers; Leo Koenderman; Paul J. Coffer

Cell death is regulated mainly through an evolutionarily conserved form of cell suicide termed apoptosis [1]. Deregulation of apoptosis has been associated with cancer, autoimmune diseases and degenerative disorders. Many cells, particularly those of the hematopoietic system, have a default program of cell death and survival that is dependent on the constant supply of survival signals. The Bcl-2 family, which has both pro- and anti-apoptotic members, plays a critical role in regulating cell survival [2]. One family member, the Bcl-2 interacting mediator of cell death (Bim), contains only a protein-interaction motif known as the BH3 domain, allowing it to bind pro-survival Bcl-2 molecules, neutralizing their function [3]. Disruption of the bim gene results in resistance to apoptosis following cytokine withdrawal in leukocytes, indicating that regulation of the pro-apoptotic activity of Bim is critical for maintenance of the default apoptotic program [4]. Here, we report that withdrawal of cytokine results in upregulation of Bim expression concomitant with induction of the apoptotic program in lymphocytes. Activation of the forkhead transcription factor FKHR-L1, previously implicated in regulation of apoptosis in T lymphocytes [5], was sufficient to induce Bim expression. We propose a mechanism by which cytokines promote lymphocyte survival by inhibition of FKHR-L1, preventing Bim expression.


Molecular and Cellular Biology | 2000

Forkhead Transcription Factor FKHR-L1 Modulates Cytokine-Dependent Transcriptional Regulation of p27KIP1

Pascale F. Dijkers; René H. Medema; Cornelieke Pals; L. Banerji; N.S.B. Thomas; E.W.-F. Lam; Boudewijn M.T. Burgering; Jan A. M. Raaijmakers; J.-W. J. Lammers; Leo Koenderman; Paul J. Coffer

ABSTRACT Interleukin-3 (IL-3), IL-5, and granulocyte-macrophage colony-stimulating factor regulate the survival, proliferation, and differentiation of hematopoietic lineages. Phosphatidylinositol 3-kinase (PI3K) has been implicated in the regulation of these processes. Here we investigate the molecular mechanism by which PI3K regulates cytokine-mediated proliferation and survival in the murine pre-B-cell line Ba/F3. IL-3 was found to repress the expression of the cyclin-dependent kinase inhibitor p27KIP1 through activation of PI3K, and this occurs at the level of transcription. This transcriptional regulation occurs through modulation of the forkhead transcription factor FKHR-L1, and IL-3 inhibited FKHR-L1 activity in a PI3K-dependent manner. We have generated Ba/F3 cell lines expressing a tamoxifen-inducible active FKHR-L1 mutant [FKHR-L1(A3):ER*]. Tamoxifen-mediated activation of FKHR-L1(A3):ER* resulted in a striking increase in p27KIP1 promoter activity and mRNA and protein levels as well as induction of the apoptotic program. The level of p27KIP1 appears to be critical in the regulation of cell survival since mere ectopic expression of p27KIP1 was sufficient to induce Ba/F3 apoptosis. Moreover, cell survival was increased in cytokine-starved bone marrow-derived stem cells from p27KIP1 null-mutant mice compared to that in cells from wild-type mice. Taken together, these observations indicate that inhibition of p27KIP1transcription through PI3K-induced FKHR-L1 phosphorylation provides a novel mechanism of regulating cytokine-mediated survival and proliferation.


Journal of Immunology | 2002

The Forkhead Transcription Factor FoxO Regulates Transcription of p27Kip1 and Bim in Response to IL-2

Marie Stahl; Pascale F. Dijkers; Geert J. P. L. Kops; Susanne M. A. Lens; Paul J. Coffer; Boudewijn M.T. Burgering; René H. Medema

The cytokine IL-2 plays a very important role in the proliferation and survival of activated T cells. These effects of IL-2 are dependent on signaling through the phosphatidylinositol 3-kinase (PI3K) pathway. We and others have shown that PI3K, through activation of protein kinase B/Akt, inhibits transcriptional activation by a number of forkhead transcription factors (FoxO1, FoxO3, and FoxO4). In this study we have investigated the role of these forkhead transcription factors in the IL-2-induced T cell proliferation and survival. We show that IL-2 regulates phosphorylation of FoxO3 in a PI3K-dependent fashion. Phosphorylation and inactivation of FoxO3 appears to play an important role in IL-2-mediated T cell survival, because mere activation of FoxO3 is sufficient to trigger apoptosis in T cells. Indeed, active FoxO3 can induce expression of IL-2-regulated genes, such as the cdk inhibitor p27Kip1 and the proapoptotic Bcl-2 family member Bim. Furthermore, we show that IL-2 triggers a rapid, PI3K-dependent, phosphorylation of FoxO1a in primary T cells. Thus, we propose that inactivation of FoxO transcription factors by IL-2 plays a critical role in T cell proliferation and survival.


Journal of Biological Chemistry | 2003

FoxO3a Transcriptional Regulation of Bim Controls Apoptosis in Paclitaxel-treated Breast Cancer Cell Lines

Andrew Sunters; Silvia Fernández de Mattos; Marie Stahl; Jan J. Brosens; Georgia Zoumpoulidou; Catherine A. Saunders; Paul J. Coffer; R H Medema; R. Charles Coombes; Eric Lam

Paclitaxel is used to treat breast cancers, but the mechanisms by which it induces apoptosis are poorly understood. Consequently, we have studied the role of the FoxO transcription factors in determining cellular response to paclitaxel. Western blotting revealed that in a panel of nine breast cancer cell lines expression of FoxO1a and FoxO3a correlated with the expression of the pro-apoptotic FoxO target Bim, which was associated with paclitaxel-induced apoptosis. In MCF-7 cells, which were paclitaxel-sensitive, the already high basal levels of FoxO3a and Bim protein increased dramatically after drug treatment, as did Bim mRNA, which correlated with apoptosis induction. This was not observed in MDA-231 cells, which expressed low levels of FoxOs and Bim. Gene reporter experiments demonstrated that in MCF-7 cells maximal induction of Bim promoter was dependent on a FoxO binding site, suggesting that FoxO3a is responsible for the transcriptional up-regulation of Bim. Gene silencing experiments showed that small interference RNA (siRNA) specific for FoxO3a reduced the levels of FoxO3a and Bim protein as well as inhibited apoptosis in paclitaxel-treated MCF-7 cells. Furthermore, siRNA specific for Bim reduced the levels of Bim protein and inhibited apoptosis in paclitaxel-treated MCF-7 cells. This is the first demonstration that up-regulation of FoxO3a by paclitaxel can result in increased levels of Bim mRNA and protein, which can be a direct cause of apoptosis in breast cancer cells.


Molecular and Cellular Biology | 2002

Control of Cell Cycle Exit and Entry by Protein Kinase B-Regulated Forkhead Transcription Factors

Geert J. P. L. Kops; René H. Medema; Janet Glassford; Marieke A. G. Essers; Pascale F. Dijkers; Paul J. Coffer; Eric Lam; Boudewijn M.T. Burgering

ABSTRACT AFX-like Forkhead transcription factors, which are controlled by phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB) signaling, are involved in regulating cell cycle progression and cell death. Both cell cycle arrest and induction of apoptosis are mediated in part by transcriptional regulation of p27kip1. Here we show that the Forkheads AFX (FOXO4) and FKHR-L1 (FOXO3a) also directly control transcription of the retinoblastoma-like p130 protein and cause upregulation of p130 protein expression. Detailed analysis of p130 regulation demonstrates that following Forkhead-induced cell cycle arrest, cells enter G0 and become quiescent. This is shown by a change in phosphorylation of p130 to G0-specific forms and increased p130/E2F-4 complex formation. Most importantly, long-term Forkhead activation causes a sustained but reversible inhibition of proliferation without a marked increase in apoptosis. As for the activity of the Forkheads, we also show that protein levels of p130 are controlled by endogenous PI3K/PKB signaling upon cell cycle reentry. Surprisingly, not only nontransformed cells, but also cancer cells such as human colon carcinoma cells, are forced into quiescence by Forkhead activation. We therefore propose that Forkhead inactivation by PKB signaling in quiescent cells is a crucial step in cell cycle reentry and contributes to the processes of transformation and regeneration.


Journal of Cell Biology | 2002

FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B–enhanced cell survival through maintenance of mitochondrial integrity

Pascale F. Dijkers; Kim U. Birkenkamp; Eric Lam; N. Shaun B. Thomas; Jan-Willem J. Lammers; Leo Koenderman; Paul J. Coffer

Survival signals elicited by cytokines include the activation of phosphatidylinositol 3-kinase (PI3K), which in turn promotes the activation of protein kinase B (PKB). Recently, PKB has been demonstrated to phosphorylate and inactivate forkhead transcription factor FKHR-L1, a potent inducer of apoptosis. To explore the mechanisms underlying the induction of apoptosis after cytokine withdrawal or FKHR-L1 activation, we used a cell line in which FKHR-L1 activity could be specifically induced. Both cytokine withdrawal and FKHR-L1 activation induced apoptosis, which was preceded by an upregulation in p27KIP1 and a concomitant decrease in cells entering the cell cycle. Induction of apoptosis by both cytokine withdrawal and activation of FKHR-L1 correlated with the disruption of mitochondrial membrane integrity and cytochrome c release. This was preceded by upregulation of the pro-apoptotic Bcl-2 family member Bim. Ectopic expression of an inhibitory mutant of FKHR-L1 substantially reduced the levels of apoptosis observed after cytokine withdrawal. Activation of PKB alone was sufficient to promote cell survival, as measured by maintenance of mitochondrial integrity and the resultant inhibition of effector caspases. Furthermore, hematopoietic stem cells isolated from Bim−/− mice exhibited reduced levels of apoptosis upon inhibition of PI3K/PKB signaling. These data demonstrate that activation of FKHR-L1 alone can recapitulate all known elements of the apoptotic program normally induced by cytokine withdrawal. Thus PI3K/PKB–mediated inhibition of this transcription factor likely provides an important mechanism by which survival factors act to prevent programmed cell death.


Nature Reviews Immunology | 2004

Forkhead-box transcription factors and their role in the immune system

Paul J. Coffer; Boudewijn M.T. Burgering

It is more than a decade since the discovery of the first forkhead-box (FOX) transcription factor in the fruit fly Drosophila melanogaster. In the intervening time, there has been an explosion in the identification and characterization of members of this family of proteins. Importantly, in the past few years, it has become clear that members of the FOX family have crucial roles in various aspects of immune regulation, from lymphocyte survival to thymic development. This review focuses on FOXP3, FOXN1, FOXJ1 and members of the FOXO subfamily and their function in the immune system.


Blood | 2010

Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization

J. van Loosdregt; Y. Vercoulen; T. Guichelaar; Y.Y.J. Gent; Jeffrey M. Beekman; P.O van Beekum; Arjan B. Brenkman; DirkJan Hijnen; T. Mutis; Eric Kalkhoven; Berent J. Prakken; Paul J. Coffer

Regulatory T cells (Tregs) are a specific subset of lymphocytes that are critical for the maintenance of self-tolerance. Expression levels of the transcription factor Foxp3 have been causally associated with Treg differentiation and function. Recent studies show that Foxp3 can also be transiently expressed in effector T cells; however, stable Foxp3 expression is required for development of a functional Treg suppressor phenotype. Here, we demonstrate that Foxp3 is acetylated, and this can be reciprocally regulated by the histone acetyltransferase p300 and the histone deacetylase SIRT1. Hyperacetylation of Foxp3 prevented polyubiquitination and proteasomal degradation, therefore dramatically increasing stable Foxp3 protein levels. Moreover, using mouse splenocytes, human peripheral blood mononuclear cells, T cell clones, and skin-derived T cells, we demonstrate that treatment with histone deacetylase inhibitors resulted in significantly increased numbers of functional Treg cells. Taken together, our data demonstrate that modulation of the acetylation state of Foxp3 provides a novel molecular mechanism for assuring rapid temporal control of Foxp3 levels in T cells, thereby regulating Treg numbers and functionality. Manipulating Foxp3 acetylation levels could therefore provide a new therapeutic strategy to control inappropriate (auto)immune responses.

Collaboration


Dive into the Paul J. Coffer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edo Vellenga

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge